{"title":"A Fresh Twist on the Phospha-(Aza)-Wittig Reaction","authors":"Chenyang Hu, Maren Pink, Jose M. Goicoechea","doi":"10.1021/jacs.5c02865","DOIUrl":null,"url":null,"abstract":"The reactivity of an unsupported phosphinidene oxide, BnArNP═O (Bn = benzyl; Ar = bulky aryl group), as the electrophilic partner in Wittig reactions with ylides is described. Reactions with methylene-triphenylphosphorane (H<sub>2</sub>C═PPh<sub>3</sub>) and ethylidene-triphenyl-phosphorane (HMeC═PPh<sub>3</sub>), proceed as expected, giving rise to the phosphaalkene metathesis products and triphenylphosphine oxide. This reaction can be extended to other ylides such as <i>N</i>-(triphenylphosphoranylidene)methanamine (MeN═PPh<sub>3</sub>), to afford an aminoiminophosphane BnArNP═NMe. In these reactions the phosphinidene oxide plays the role of an electrophile, which would typically be the remit of an organic carbonyl in classical Wittig reactions. Further mechanistic insight into such transformations can be gained by altering the nature of the phosphorus-ylide. Upon reacting BnArNP═O with H<sub>2</sub>C═PMe<sub>3</sub> (which possesses a smaller, more Lewis basic, phosphine) an alternative product is formed. This transformation supports the formation of a betaine intermediate that subsequently undergoes hydrogen-migration to afford an oxidized phosphorus(V) compound related to phosphorus acid.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"23 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c02865","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The reactivity of an unsupported phosphinidene oxide, BnArNP═O (Bn = benzyl; Ar = bulky aryl group), as the electrophilic partner in Wittig reactions with ylides is described. Reactions with methylene-triphenylphosphorane (H2C═PPh3) and ethylidene-triphenyl-phosphorane (HMeC═PPh3), proceed as expected, giving rise to the phosphaalkene metathesis products and triphenylphosphine oxide. This reaction can be extended to other ylides such as N-(triphenylphosphoranylidene)methanamine (MeN═PPh3), to afford an aminoiminophosphane BnArNP═NMe. In these reactions the phosphinidene oxide plays the role of an electrophile, which would typically be the remit of an organic carbonyl in classical Wittig reactions. Further mechanistic insight into such transformations can be gained by altering the nature of the phosphorus-ylide. Upon reacting BnArNP═O with H2C═PMe3 (which possesses a smaller, more Lewis basic, phosphine) an alternative product is formed. This transformation supports the formation of a betaine intermediate that subsequently undergoes hydrogen-migration to afford an oxidized phosphorus(V) compound related to phosphorus acid.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.