A Krüppel-like factor establishes cellular heterogeneity during schistosome tegumental maintenance.

IF 5.5 1区 医学 Q1 MICROBIOLOGY
PLoS Pathogens Pub Date : 2025-03-28 eCollection Date: 2025-03-01 DOI:10.1371/journal.ppat.1013002
Lu Zhao, George R Wendt, James J Collins Iii
{"title":"A Krüppel-like factor establishes cellular heterogeneity during schistosome tegumental maintenance.","authors":"Lu Zhao, George R Wendt, James J Collins Iii","doi":"10.1371/journal.ppat.1013002","DOIUrl":null,"url":null,"abstract":"<p><p>Schistosomes are blood dwelling parasitic flatworms that can survive in the circulation of their human hosts for decades. These parasites possess a unique syncytial skin-like surface tissue known as the tegument that is thought to be uniquely adapted for survival in the blood by mediating evasion of host defenses. Previous studies have shown that cell bodies within the tegumental syncytium are turned over and perpetually replaced by new tegumental cells derived from a pool of somatic stem cells called neoblasts. Thus, neoblast-driven tegumental homeostasis has been suggested to be a key part of the parasite's strategy for long-term survival in the blood. However, the comprehensive set of molecular programs that control the specification of tegumental cells are not defined. To better understand these programs, we characterized a homolog of a Krüppel-like factor 4 (klf4) transcription factor that was identified in previous single-cell RNA sequencing (scRNAseq) studies to be expressed in a putative tegument related lineage (TRL) of Schistosoma mansoni. Here, using a combination of RNAi, coupled with scRNAseq and bulk RNAseq approaches, we show that klf4 is essential for the maintenance of an entire TRL. Loss of this klf4+ TRL resulted in loss of a subpopulation of molecularly unique tegument cells, without altering the total number of mature tegumental cells. Thus, klf4 is critical for regulating the balance between different cell populations within the tegumental progenitor pool and thereby influences tegumental production dynamics and the fine-tuning of the molecular identity of the mature tegument. Understanding the functions of distinct populations of cells within the tegumental syncytium is expected to provide insights into parasite defense mechanisms and new avenues for combatting the disease these worms cause.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"21 3","pages":"e1013002"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1013002","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Schistosomes are blood dwelling parasitic flatworms that can survive in the circulation of their human hosts for decades. These parasites possess a unique syncytial skin-like surface tissue known as the tegument that is thought to be uniquely adapted for survival in the blood by mediating evasion of host defenses. Previous studies have shown that cell bodies within the tegumental syncytium are turned over and perpetually replaced by new tegumental cells derived from a pool of somatic stem cells called neoblasts. Thus, neoblast-driven tegumental homeostasis has been suggested to be a key part of the parasite's strategy for long-term survival in the blood. However, the comprehensive set of molecular programs that control the specification of tegumental cells are not defined. To better understand these programs, we characterized a homolog of a Krüppel-like factor 4 (klf4) transcription factor that was identified in previous single-cell RNA sequencing (scRNAseq) studies to be expressed in a putative tegument related lineage (TRL) of Schistosoma mansoni. Here, using a combination of RNAi, coupled with scRNAseq and bulk RNAseq approaches, we show that klf4 is essential for the maintenance of an entire TRL. Loss of this klf4+ TRL resulted in loss of a subpopulation of molecularly unique tegument cells, without altering the total number of mature tegumental cells. Thus, klf4 is critical for regulating the balance between different cell populations within the tegumental progenitor pool and thereby influences tegumental production dynamics and the fine-tuning of the molecular identity of the mature tegument. Understanding the functions of distinct populations of cells within the tegumental syncytium is expected to provide insights into parasite defense mechanisms and new avenues for combatting the disease these worms cause.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Pathogens
PLoS Pathogens MICROBIOLOGY-PARASITOLOGY
自引率
3.00%
发文量
598
期刊介绍: Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信