Cristina Sanfilippo, Paola Castrogiovanni, Rosa Imbesi, Michele Vecchio, Manlio Vinciguerra, Kaj Blennow, Henrik Zetterberg, Michelino Di Rosa
{"title":"Sex-specific modulation of FOLR1 and its cycle enzyme genes in Alzheimer's disease brain regions.","authors":"Cristina Sanfilippo, Paola Castrogiovanni, Rosa Imbesi, Michele Vecchio, Manlio Vinciguerra, Kaj Blennow, Henrik Zetterberg, Michelino Di Rosa","doi":"10.1007/s11011-025-01578-x","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive cognitive and functional decline. Its incidence increases significantly with age and is more prevalent in women than men. We investigated the folate receptor alpha (FOLR1) gene expression levels in the central nervous system (CNS) of AD and non-demented healthy control (NDHC) subjects. Our cohort included 3,946 samples: 2,391 NDHC and 1,555 AD patients, stratified by brain region, age, and sex. Interestingly, a significant increase in FOLR1 expression was observed only in females with AD compared to NDHC females. Furthermore, we found that FOLR1 expression was differentially increased in the prefrontal cortex (PFC) and diencephalon (DIE) only in AD females. Moreover, in females, genes involved in the folic acid (FA) cycle that drives DNA synthesis were significantly modulated. In contrast, in males, downregulation of TYMS effectively blocks the completion of the cycle, thereby preventing downstream DNA synthesis. Tissue Transcriptome Deconvolution (TTD) analysis revealed astrocytes and endothelial cells associated with FOLR1 expression in both AD males and females. Gene Ontology analysis supported these findings, showing enrichment in processes aligned with these cell types. Positive correlations between brain FOLR1 expression and markers for astrocytes (glial fibrillary acidic protein) and endothelial cells (CD31) provided further validation. Our findings suggest a potential role for sex-dependent FOLR1 expression and its association with specific brain regions and cellular processes in AD.</p>","PeriodicalId":18685,"journal":{"name":"Metabolic brain disease","volume":"40 4","pages":"163"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic brain disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11011-025-01578-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive cognitive and functional decline. Its incidence increases significantly with age and is more prevalent in women than men. We investigated the folate receptor alpha (FOLR1) gene expression levels in the central nervous system (CNS) of AD and non-demented healthy control (NDHC) subjects. Our cohort included 3,946 samples: 2,391 NDHC and 1,555 AD patients, stratified by brain region, age, and sex. Interestingly, a significant increase in FOLR1 expression was observed only in females with AD compared to NDHC females. Furthermore, we found that FOLR1 expression was differentially increased in the prefrontal cortex (PFC) and diencephalon (DIE) only in AD females. Moreover, in females, genes involved in the folic acid (FA) cycle that drives DNA synthesis were significantly modulated. In contrast, in males, downregulation of TYMS effectively blocks the completion of the cycle, thereby preventing downstream DNA synthesis. Tissue Transcriptome Deconvolution (TTD) analysis revealed astrocytes and endothelial cells associated with FOLR1 expression in both AD males and females. Gene Ontology analysis supported these findings, showing enrichment in processes aligned with these cell types. Positive correlations between brain FOLR1 expression and markers for astrocytes (glial fibrillary acidic protein) and endothelial cells (CD31) provided further validation. Our findings suggest a potential role for sex-dependent FOLR1 expression and its association with specific brain regions and cellular processes in AD.
期刊介绍:
Metabolic Brain Disease serves as a forum for the publication of outstanding basic and clinical papers on all metabolic brain disease, including both human and animal studies. The journal publishes papers on the fundamental pathogenesis of these disorders and on related experimental and clinical techniques and methodologies. Metabolic Brain Disease is directed to physicians, neuroscientists, internists, psychiatrists, neurologists, pathologists, and others involved in the research and treatment of a broad range of metabolic brain disorders.