Protective effects of alpha-lipoic acid on memory deficit induced by repeated doses of solifenacin in mice: the role of nitro-oxidative stress.

IF 3.2 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Leonardo Pimentel Dantas, Emanuel Carneiro de Vasconcelos, Carla da Silva Cunha, Pauliane Valeska Chagas Batista, Morgana Carla Souza Torres, Caren Nádia Soares de Sousa, Gabriel Angelo de Aquino, Manuel Alves Dos Santos Junior, Pedro Henrique Freitas de Rezende, Wilson Silva de Vasconcelos, Manoel Cláudio Azevedo Patrocinio, Silvânia Maria Mendes Vasconcelos
{"title":"Protective effects of alpha-lipoic acid on memory deficit induced by repeated doses of solifenacin in mice: the role of nitro-oxidative stress.","authors":"Leonardo Pimentel Dantas, Emanuel Carneiro de Vasconcelos, Carla da Silva Cunha, Pauliane Valeska Chagas Batista, Morgana Carla Souza Torres, Caren Nádia Soares de Sousa, Gabriel Angelo de Aquino, Manuel Alves Dos Santos Junior, Pedro Henrique Freitas de Rezende, Wilson Silva de Vasconcelos, Manoel Cláudio Azevedo Patrocinio, Silvânia Maria Mendes Vasconcelos","doi":"10.1007/s11011-025-01586-x","DOIUrl":null,"url":null,"abstract":"<p><p>Solifenacin (Sol) is one of the most used antimuscarinics for the treatment of bladder dysfunction and there are no conclusive studies on its effects on learning and memory after long-term use. Since substances with antioxidant action, such as alpha-lipoic acid (ALA), have shown protective action in memory deficit and Alzheimer's disease, we decided to study the effects of Sol alone or associated with ALA in behavioral tests of memory and its relation to nitro-oxidative stress in different brain areas. Mice received saline or Sol p.o. for 14 or 28 days. ALA groups received: (a) saline + ALA, (b) Sol for 14 days and Sol + ALA from the 15th to the 28th days and, (c) Sol + ALA for 28 days. Behavioral tests were performed and oxidative changes (lipid peroxidation) and nitrite in the prefrontal cortex (PFC), hippocampus (HC) and striatum (ST) were also determined. Sol produced memory alterations in the mice, reducing the step-down latency and the recognition index in the novel object recognition test. Sol also increased lipid peroxidation in PFC, HC and ST and nitrite levels in the HC. On the other hand, ALA associated with Sol was able to restrict the effects caused by Sol alone, both in relation to nitro-oxidative parameters and in relation to behavioral tests. Taken together, our data suggest that ALA can be administered as an adjunctive drug in patients requiring prolonged use of Sol to mitigate these adverse central nervous system effects. However, clinical studies need to be performed to corroborate preclinical research.</p>","PeriodicalId":18685,"journal":{"name":"Metabolic brain disease","volume":"40 4","pages":"165"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic brain disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11011-025-01586-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Solifenacin (Sol) is one of the most used antimuscarinics for the treatment of bladder dysfunction and there are no conclusive studies on its effects on learning and memory after long-term use. Since substances with antioxidant action, such as alpha-lipoic acid (ALA), have shown protective action in memory deficit and Alzheimer's disease, we decided to study the effects of Sol alone or associated with ALA in behavioral tests of memory and its relation to nitro-oxidative stress in different brain areas. Mice received saline or Sol p.o. for 14 or 28 days. ALA groups received: (a) saline + ALA, (b) Sol for 14 days and Sol + ALA from the 15th to the 28th days and, (c) Sol + ALA for 28 days. Behavioral tests were performed and oxidative changes (lipid peroxidation) and nitrite in the prefrontal cortex (PFC), hippocampus (HC) and striatum (ST) were also determined. Sol produced memory alterations in the mice, reducing the step-down latency and the recognition index in the novel object recognition test. Sol also increased lipid peroxidation in PFC, HC and ST and nitrite levels in the HC. On the other hand, ALA associated with Sol was able to restrict the effects caused by Sol alone, both in relation to nitro-oxidative parameters and in relation to behavioral tests. Taken together, our data suggest that ALA can be administered as an adjunctive drug in patients requiring prolonged use of Sol to mitigate these adverse central nervous system effects. However, clinical studies need to be performed to corroborate preclinical research.

硫辛酸对重复剂量索利那新诱导的小鼠记忆缺陷的保护作用:硝基氧化应激的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Metabolic brain disease
Metabolic brain disease 医学-内分泌学与代谢
CiteScore
5.90
自引率
5.60%
发文量
248
审稿时长
6-12 weeks
期刊介绍: Metabolic Brain Disease serves as a forum for the publication of outstanding basic and clinical papers on all metabolic brain disease, including both human and animal studies. The journal publishes papers on the fundamental pathogenesis of these disorders and on related experimental and clinical techniques and methodologies. Metabolic Brain Disease is directed to physicians, neuroscientists, internists, psychiatrists, neurologists, pathologists, and others involved in the research and treatment of a broad range of metabolic brain disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信