The "DDVF" motif used by viral and bacterial proteins to hijack RSK kinases mimics a short linear motif (SLiM) found in proteins related to the RAS-ERK MAP kinase pathway.
Martin Veinstein, Vincent Stroobant, Fanny Wavreil, Thomas Michiels, Frédéric Sorgeloos
{"title":"The \"DDVF\" motif used by viral and bacterial proteins to hijack RSK kinases mimics a short linear motif (SLiM) found in proteins related to the RAS-ERK MAP kinase pathway.","authors":"Martin Veinstein, Vincent Stroobant, Fanny Wavreil, Thomas Michiels, Frédéric Sorgeloos","doi":"10.1371/journal.ppat.1013016","DOIUrl":null,"url":null,"abstract":"<p><p>Proteins of pathogens such as cardioviruses, Kaposi sarcoma-associated herpes virus, varicella zoster virus and bacteria of the genus Yersinia were previously shown to use a common \"DDVF\" (D/E-D/E-V-F) short linear motif (SLiM) to hijack cellular kinases of the RSK (p90 ribosomal S6 kinases) family. Notably, the leader (L) protein of Theiler's murine encephalomyelitis virus (TMEV), a cardiovirus, and protein YopM of Yersinia species were shown to act as adapters to retarget RSKs toward unconventional substrates, nucleoporins and pyrin, respectively. Remarkable conservation of the SLiM docking site targeted by pathogens' proteins in RSK sequences suggested a physiological role for this site. Using SLiM prediction tools and AlphaFold docking, we screened the human proteome for proteins that would interact with RSKs through a DDVF-like SLiM. Co-immunoprecipitation experiments show that two candidates previously known as RSK partners, FGFR1 and SPRED2, as well as two candidates identified as novel RSK partners, GAB3 and CNKSR2 do interact with RSKs through a similar interface as the one used by pathogens, as was recently documented for SPRED2. FGFR1 employs a DSVF motif to bind RSKs and phosphorylation of the serine in this motif slightly increased RSK binding. FGFR1, SPRED2, GAB3 and CNKSR2 act upstream of RSK in the RAS-ERK MAP kinase pathway. Analysis of ERK activation in cells expressing a mutated form of RSK lacking the DDVF-docking site suggests that RSK might interact with the DDVF-like SLiM of several partners to provide a negative feed-back to the ERK MAPK pathway. Moreover, after TMEV infection, ERK phosphorylation was altered by the L protein in a DDVF-dependent manner. Taken together, our data suggest that, in addition to retargeting RSKs toward unconventional substrates, pathogen proteins carrying a DDVF-like motif can compete with endogenous DDVF-containing proteins for RSK binding, thereby altering the regulation of the RAS-ERK MAP kinase pathway.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"21 3","pages":"e1013016"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1013016","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Proteins of pathogens such as cardioviruses, Kaposi sarcoma-associated herpes virus, varicella zoster virus and bacteria of the genus Yersinia were previously shown to use a common "DDVF" (D/E-D/E-V-F) short linear motif (SLiM) to hijack cellular kinases of the RSK (p90 ribosomal S6 kinases) family. Notably, the leader (L) protein of Theiler's murine encephalomyelitis virus (TMEV), a cardiovirus, and protein YopM of Yersinia species were shown to act as adapters to retarget RSKs toward unconventional substrates, nucleoporins and pyrin, respectively. Remarkable conservation of the SLiM docking site targeted by pathogens' proteins in RSK sequences suggested a physiological role for this site. Using SLiM prediction tools and AlphaFold docking, we screened the human proteome for proteins that would interact with RSKs through a DDVF-like SLiM. Co-immunoprecipitation experiments show that two candidates previously known as RSK partners, FGFR1 and SPRED2, as well as two candidates identified as novel RSK partners, GAB3 and CNKSR2 do interact with RSKs through a similar interface as the one used by pathogens, as was recently documented for SPRED2. FGFR1 employs a DSVF motif to bind RSKs and phosphorylation of the serine in this motif slightly increased RSK binding. FGFR1, SPRED2, GAB3 and CNKSR2 act upstream of RSK in the RAS-ERK MAP kinase pathway. Analysis of ERK activation in cells expressing a mutated form of RSK lacking the DDVF-docking site suggests that RSK might interact with the DDVF-like SLiM of several partners to provide a negative feed-back to the ERK MAPK pathway. Moreover, after TMEV infection, ERK phosphorylation was altered by the L protein in a DDVF-dependent manner. Taken together, our data suggest that, in addition to retargeting RSKs toward unconventional substrates, pathogen proteins carrying a DDVF-like motif can compete with endogenous DDVF-containing proteins for RSK binding, thereby altering the regulation of the RAS-ERK MAP kinase pathway.
期刊介绍:
Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.