Kai Yan, Zhiheng Zhou, Sihao Liu, Guanghui Wang, Guiying Yan, Edwin Wang
{"title":"Develop a Deep-Learning Model to Predict Cancer Immunotherapy Response Using In-Born Genomes.","authors":"Kai Yan, Zhiheng Zhou, Sihao Liu, Guanghui Wang, Guiying Yan, Edwin Wang","doi":"10.1109/JBHI.2025.3555596","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of immune checkpoint inhibitors (ICIs) has significantly advanced cancer treatment. However, only 15-30% of the cancer patients respond to ICI treatment, which stimulates and enhances host immunity to eliminate tumor cells. ICI treatment is very expensive and has potential adverse reactions; therefore, it is crucial to develop a method which enables to accurately and rapidly assess a patient's suitability before ICI treatment. We complied germline whole-genome sequencing (WES) data of 37 melanoma patients who have been treated with ICIs and sequenced in our lab previously, and the WES data of other 700 ICI-treated cancer patients in public domain. Using these data, we proposed a novel double-channel attention neural network (DANN) model to predict cancer ICI-response and validate the predictions. DANN achieved a mean accuracy and AUC of 0.95 and 0.98, respectively, which outperformed traditional machine learning methods. Enrichment analysis of the DANN-identified genes indicated that cancer patients whose in-born genomic variants might mainly affect host immune system in a wide-ranging manner, and then affect ICI response. Finally, we found a set of 12 genes bearing genomic variants were significantly associated with cancer patient survivals after ICI treatment.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3555596","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of immune checkpoint inhibitors (ICIs) has significantly advanced cancer treatment. However, only 15-30% of the cancer patients respond to ICI treatment, which stimulates and enhances host immunity to eliminate tumor cells. ICI treatment is very expensive and has potential adverse reactions; therefore, it is crucial to develop a method which enables to accurately and rapidly assess a patient's suitability before ICI treatment. We complied germline whole-genome sequencing (WES) data of 37 melanoma patients who have been treated with ICIs and sequenced in our lab previously, and the WES data of other 700 ICI-treated cancer patients in public domain. Using these data, we proposed a novel double-channel attention neural network (DANN) model to predict cancer ICI-response and validate the predictions. DANN achieved a mean accuracy and AUC of 0.95 and 0.98, respectively, which outperformed traditional machine learning methods. Enrichment analysis of the DANN-identified genes indicated that cancer patients whose in-born genomic variants might mainly affect host immune system in a wide-ranging manner, and then affect ICI response. Finally, we found a set of 12 genes bearing genomic variants were significantly associated with cancer patient survivals after ICI treatment.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.