Faisal Binzagr, Ansar Naseem, Muhammad Umer Farooq, Nashwan Alromema
{"title":"TNFR-LSTM: A Deep Intelligent Model for Identification of Tumour Necroses Factor Receptor (TNFR) Activity","authors":"Faisal Binzagr, Ansar Naseem, Muhammad Umer Farooq, Nashwan Alromema","doi":"10.1049/syb2.70007","DOIUrl":null,"url":null,"abstract":"<p>Tumour necrosis factors (TNFs) are key players in processes such as inflammation, cancer development, and autoimmune diseases. However, accurately identifying TNFs remains challenging because of their complex interactions with other cytokines. Although existing machine learning models offer some potential, they often fall short in reliably distinguishing TNFs. To address this issue, the authors developed DEEP-TNFR, a more advanced model designed specifically to predict TNFR activity. The approach incorporates features such as relative and reverse positions, along with statistical moments, and is tested on a recognised benchmark dataset. The authors explored six different deep learning classifiers, including fully connected networks (FCN), convolutional neural networks (CNN), simple RNN (RNN), long short-term memory (LSTM), bidirectional LSTM (Bi-LSTM), and gated recurrent units (GRU). The model's effectiveness was evaluated through multiple methods: self-consistency, independent set testing, and 5- and 10-fold cross-validation, using metrics, such as accuracy, specificity, sensitivity, and Matthews correlation coefficient. Among these classifiers, LSTM proved to be the most effective, outperforming the others and setting a new standard compared to previous studies. DEEP-TNFR is poised to significantly support ongoing research by enhancing the accuracy of TNFR identification.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"19 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.70007","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.70007","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tumour necrosis factors (TNFs) are key players in processes such as inflammation, cancer development, and autoimmune diseases. However, accurately identifying TNFs remains challenging because of their complex interactions with other cytokines. Although existing machine learning models offer some potential, they often fall short in reliably distinguishing TNFs. To address this issue, the authors developed DEEP-TNFR, a more advanced model designed specifically to predict TNFR activity. The approach incorporates features such as relative and reverse positions, along with statistical moments, and is tested on a recognised benchmark dataset. The authors explored six different deep learning classifiers, including fully connected networks (FCN), convolutional neural networks (CNN), simple RNN (RNN), long short-term memory (LSTM), bidirectional LSTM (Bi-LSTM), and gated recurrent units (GRU). The model's effectiveness was evaluated through multiple methods: self-consistency, independent set testing, and 5- and 10-fold cross-validation, using metrics, such as accuracy, specificity, sensitivity, and Matthews correlation coefficient. Among these classifiers, LSTM proved to be the most effective, outperforming the others and setting a new standard compared to previous studies. DEEP-TNFR is poised to significantly support ongoing research by enhancing the accuracy of TNFR identification.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.