{"title":"COFA: counterfactual attention framework for trustworthy wafer map failure classification","authors":"Kaiyue Feng, Jia Wang, Chenke Yin, Andong Li","doi":"10.1007/s10489-025-06488-0","DOIUrl":null,"url":null,"abstract":"<div><p>Classifying wafer map failure pattern plays a crucial role in semiconductor manufacturing, as it can help identify the underlying cause of abnormalities, thus reducing production costs. Existing works have shown that deep learning methods have great advantages in recognizing failure patterns. However, recent studies mainly focus on utilizing attention mechanisms to pinpoint critical regions as salient features, while ignoring the imperceptible underlying features and the causal relationship between prediction results and attention. This paper introduces a model-agnostic classification framework that leverages counterfactual explanations to enhance attention. Our approach consists of two steps: counterfactual example generation (Explain) and attention-based classifier refinement (Reinforce). The counterfactual explainer is designed to identify key pixel-level features, the adjustment of which could lead to different predictions. These generated counterfactual examples reveal hidden causal factors in the classifier’s decision-making process. Then the classifier utilizes these pixel features as attention, conducting reliable classification under the guidance of counterfactual examples. Through extensive experiments on real-world datasets, we demonstrate the effectiveness of our proposed model. It achieves an accuracy of 98.125<span>\\(\\%\\)</span> in the defect classification task on the WM-811K dataset and 92.544<span>\\(\\%\\)</span> on the MixedWM38 dataset, outperforming state-of-the-art attention methods such as SENet, CBAM, and Vision Transformer by over 5%. Our results highlight the superiority of our approach and its potential for practical implementation in the semiconductor manufacturing domain.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06488-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Classifying wafer map failure pattern plays a crucial role in semiconductor manufacturing, as it can help identify the underlying cause of abnormalities, thus reducing production costs. Existing works have shown that deep learning methods have great advantages in recognizing failure patterns. However, recent studies mainly focus on utilizing attention mechanisms to pinpoint critical regions as salient features, while ignoring the imperceptible underlying features and the causal relationship between prediction results and attention. This paper introduces a model-agnostic classification framework that leverages counterfactual explanations to enhance attention. Our approach consists of two steps: counterfactual example generation (Explain) and attention-based classifier refinement (Reinforce). The counterfactual explainer is designed to identify key pixel-level features, the adjustment of which could lead to different predictions. These generated counterfactual examples reveal hidden causal factors in the classifier’s decision-making process. Then the classifier utilizes these pixel features as attention, conducting reliable classification under the guidance of counterfactual examples. Through extensive experiments on real-world datasets, we demonstrate the effectiveness of our proposed model. It achieves an accuracy of 98.125\(\%\) in the defect classification task on the WM-811K dataset and 92.544\(\%\) on the MixedWM38 dataset, outperforming state-of-the-art attention methods such as SENet, CBAM, and Vision Transformer by over 5%. Our results highlight the superiority of our approach and its potential for practical implementation in the semiconductor manufacturing domain.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.