COFA: counterfactual attention framework for trustworthy wafer map failure classification

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Kaiyue Feng, Jia Wang, Chenke Yin, Andong Li
{"title":"COFA: counterfactual attention framework for trustworthy wafer map failure classification","authors":"Kaiyue Feng,&nbsp;Jia Wang,&nbsp;Chenke Yin,&nbsp;Andong Li","doi":"10.1007/s10489-025-06488-0","DOIUrl":null,"url":null,"abstract":"<div><p>Classifying wafer map failure pattern plays a crucial role in semiconductor manufacturing, as it can help identify the underlying cause of abnormalities, thus reducing production costs. Existing works have shown that deep learning methods have great advantages in recognizing failure patterns. However, recent studies mainly focus on utilizing attention mechanisms to pinpoint critical regions as salient features, while ignoring the imperceptible underlying features and the causal relationship between prediction results and attention. This paper introduces a model-agnostic classification framework that leverages counterfactual explanations to enhance attention. Our approach consists of two steps: counterfactual example generation (Explain) and attention-based classifier refinement (Reinforce). The counterfactual explainer is designed to identify key pixel-level features, the adjustment of which could lead to different predictions. These generated counterfactual examples reveal hidden causal factors in the classifier’s decision-making process. Then the classifier utilizes these pixel features as attention, conducting reliable classification under the guidance of counterfactual examples. Through extensive experiments on real-world datasets, we demonstrate the effectiveness of our proposed model. It achieves an accuracy of 98.125<span>\\(\\%\\)</span> in the defect classification task on the WM-811K dataset and 92.544<span>\\(\\%\\)</span> on the MixedWM38 dataset, outperforming state-of-the-art attention methods such as SENet, CBAM, and Vision Transformer by over 5%. Our results highlight the superiority of our approach and its potential for practical implementation in the semiconductor manufacturing domain.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06488-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Classifying wafer map failure pattern plays a crucial role in semiconductor manufacturing, as it can help identify the underlying cause of abnormalities, thus reducing production costs. Existing works have shown that deep learning methods have great advantages in recognizing failure patterns. However, recent studies mainly focus on utilizing attention mechanisms to pinpoint critical regions as salient features, while ignoring the imperceptible underlying features and the causal relationship between prediction results and attention. This paper introduces a model-agnostic classification framework that leverages counterfactual explanations to enhance attention. Our approach consists of two steps: counterfactual example generation (Explain) and attention-based classifier refinement (Reinforce). The counterfactual explainer is designed to identify key pixel-level features, the adjustment of which could lead to different predictions. These generated counterfactual examples reveal hidden causal factors in the classifier’s decision-making process. Then the classifier utilizes these pixel features as attention, conducting reliable classification under the guidance of counterfactual examples. Through extensive experiments on real-world datasets, we demonstrate the effectiveness of our proposed model. It achieves an accuracy of 98.125\(\%\) in the defect classification task on the WM-811K dataset and 92.544\(\%\) on the MixedWM38 dataset, outperforming state-of-the-art attention methods such as SENet, CBAM, and Vision Transformer by over 5%. Our results highlight the superiority of our approach and its potential for practical implementation in the semiconductor manufacturing domain.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信