Mohamed El Amine Douad, Noureddine Aribi, Samir Loudni, Arnold Hien, Yahia Lebbah
{"title":"Maximizing diversity in k-pattern set mining through constraint programming and entropy","authors":"Mohamed El Amine Douad, Noureddine Aribi, Samir Loudni, Arnold Hien, Yahia Lebbah","doi":"10.1007/s10489-025-06482-6","DOIUrl":null,"url":null,"abstract":"<div><p>Extracting diverse and frequent closed itemsets from large datasets is a core challenge in pattern mining, with significant implications across domains such as fraud detection, recommendation systems, and machine learning. Existing approaches often lack flexibility and efficiency, and struggle with initial itemset selection bias and redundancy. This paper addresses these research gaps by introducing a compact and modular constraint programming model that formalizes the search for diverse patterns. Our approach incorporates a novel global constraint derived from a relaxed Overlap diversity measure, using tighter lower and upper bounds to improve filtering capabilities. Unlike traditional methods, we leverage an entropy-based optimization framework that combines joint entropy maximization with top-k pattern mining to identify the maximally k-diverse pattern set. Our approach ensures more comprehensive and informative pattern discovery by minimizing redundancy and promoting pattern diversity. Extensive experiments validate the effectiveness of the proposed method, demonstrating significant performance gains and superior pattern quality compared to state-of-the-art approaches. Implemented in both sequential and parallel versions, the framework offers an efficient and adaptable solution for anytime pattern mining tasks in various domains.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06482-6","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Extracting diverse and frequent closed itemsets from large datasets is a core challenge in pattern mining, with significant implications across domains such as fraud detection, recommendation systems, and machine learning. Existing approaches often lack flexibility and efficiency, and struggle with initial itemset selection bias and redundancy. This paper addresses these research gaps by introducing a compact and modular constraint programming model that formalizes the search for diverse patterns. Our approach incorporates a novel global constraint derived from a relaxed Overlap diversity measure, using tighter lower and upper bounds to improve filtering capabilities. Unlike traditional methods, we leverage an entropy-based optimization framework that combines joint entropy maximization with top-k pattern mining to identify the maximally k-diverse pattern set. Our approach ensures more comprehensive and informative pattern discovery by minimizing redundancy and promoting pattern diversity. Extensive experiments validate the effectiveness of the proposed method, demonstrating significant performance gains and superior pattern quality compared to state-of-the-art approaches. Implemented in both sequential and parallel versions, the framework offers an efficient and adaptable solution for anytime pattern mining tasks in various domains.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.