{"title":"A Categorical Characterization of Quantum Projective \\(\\mathbb {Z}\\)-spaces","authors":"Izuru Mori, Adam Nyman","doi":"10.1007/s10485-025-09806-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we study a generalization of the notion of AS-regularity for connected <span>\\({\\mathbb Z}\\)</span>-algebras defined in Mori and Nyman (J Pure Appl Algebra, 225(9), 106676, 2021). Our main result is a characterization of those categories equivalent to noncommutative projective schemes associated to right coherent regular <span>\\({\\mathbb Z}\\)</span>-algebras, which we call quantum projective <span>\\({\\mathbb Z}\\)</span>-spaces in this paper. As an application, we show that smooth quadric hypersurfaces and the standard noncommutative smooth quadric surfaces studied in Smith and Van den Bergh (J Noncommut Geom 7(3), 817–856, 2013) , Mori and Ueyama (J Noncommut Geom, 15(2), 489–529, 2021) have right noetherian AS-regular <span>\\({\\mathbb Z}\\)</span>-algebras as homogeneous coordinate algebras. In particular, the latter are thus noncommutative <span>\\({\\mathbb P}^1\\times {\\mathbb P}^1\\)</span> [in the sense of Van den Bergh (Int Math Res Not 17:3983–4026, 2011)].</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"33 2","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-025-09806-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we study a generalization of the notion of AS-regularity for connected \({\mathbb Z}\)-algebras defined in Mori and Nyman (J Pure Appl Algebra, 225(9), 106676, 2021). Our main result is a characterization of those categories equivalent to noncommutative projective schemes associated to right coherent regular \({\mathbb Z}\)-algebras, which we call quantum projective \({\mathbb Z}\)-spaces in this paper. As an application, we show that smooth quadric hypersurfaces and the standard noncommutative smooth quadric surfaces studied in Smith and Van den Bergh (J Noncommut Geom 7(3), 817–856, 2013) , Mori and Ueyama (J Noncommut Geom, 15(2), 489–529, 2021) have right noetherian AS-regular \({\mathbb Z}\)-algebras as homogeneous coordinate algebras. In particular, the latter are thus noncommutative \({\mathbb P}^1\times {\mathbb P}^1\) [in the sense of Van den Bergh (Int Math Res Not 17:3983–4026, 2011)].
期刊介绍:
Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant.
Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.