{"title":"High-Resolution LiDAR Depth Completion Algorithm Guided by Image Topography Maps","authors":"Genyuan Xing;Jun Lin;Kunyang Wu;Yang Liu;Guanyu Zhang","doi":"10.1109/TITS.2025.3528017","DOIUrl":null,"url":null,"abstract":"The process of recovering dense depth maps from sparse depth information is prone to edge blurring. This paper proposes an image-guided depth completion algorithm to address this issue. The method uses the edges of the color image as prior constraints to construct an image topography map as an intermediate representation and performs nonlinear adaptive reconstruction based on the image content to adjust the position and scale of the pixel-weighted neighborhood. This approach avoids incorporating depth information with different distributions when estimating missing values, resulting in a full-resolution dense depth map with sharp edges. We conducted a quantitative comparison with state-of-the-art models on the KITTI and MidAir datasets, demonstrating that our algorithm has better performance and robustness in terms of completion accuracy. We also analyzed the impact of sparsity on the algorithm’s performance and its ability to recover fine structures in dense depth results and demonstrated the reconstruction results for sparse data in real-world scenarios.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"26 4","pages":"4457-4468"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10891578/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The process of recovering dense depth maps from sparse depth information is prone to edge blurring. This paper proposes an image-guided depth completion algorithm to address this issue. The method uses the edges of the color image as prior constraints to construct an image topography map as an intermediate representation and performs nonlinear adaptive reconstruction based on the image content to adjust the position and scale of the pixel-weighted neighborhood. This approach avoids incorporating depth information with different distributions when estimating missing values, resulting in a full-resolution dense depth map with sharp edges. We conducted a quantitative comparison with state-of-the-art models on the KITTI and MidAir datasets, demonstrating that our algorithm has better performance and robustness in terms of completion accuracy. We also analyzed the impact of sparsity on the algorithm’s performance and its ability to recover fine structures in dense depth results and demonstrated the reconstruction results for sparse data in real-world scenarios.
期刊介绍:
The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.