Federated Transfer Learning for Privacy-Preserved Cross-City Traffic Flow Prediction

IF 7.9 1区 工程技术 Q1 ENGINEERING, CIVIL
Xiaoming Yuan;Zhenyu Luo;Ning Zhang;Ge Guo;Lin Wang;Changle Li;Dusit Niyato
{"title":"Federated Transfer Learning for Privacy-Preserved Cross-City Traffic Flow Prediction","authors":"Xiaoming Yuan;Zhenyu Luo;Ning Zhang;Ge Guo;Lin Wang;Changle Li;Dusit Niyato","doi":"10.1109/TITS.2025.3545445","DOIUrl":null,"url":null,"abstract":"Accurate future traffic flow prediction is essential for decision-making in travel recommendations and route planning, aiming to reduce congestion and enhance traffic safety. Traditional traffic flow prediction models often face limitations in quality and structure, leading to increased training costs and inefficiencies, due to data scarcity and centralized training modes that compromise data privacy. To address these issues, we propose a model called 2MGTCN, which combines Multi-modal Graph Convolutional Networks (GCN) and Temporal Convolutional Networks (TCN) for Cross-city Traffic Flow Prediction (TFP). Our 2MGTCN model utilizes federated transfer learning (FTL) to transfer the model from the source to the target domain, mitigating data scarcity. It also incorporates GCN and TCN to capture both spatial and temporal information, enhancing cross-city adaptability. Additionally, Grey Relation Analysis (GRA) and Dynamic Time Warping (DTW) methods are applied to capture road relationships, and a Federated Parameter Aggregation based on Spatial Similarity (FPASS) algorithm is proposed for ensuring effective parameter aggregation by considering spatial similarity. Simulation results show that our 2MGTCN algorithm outperforms traditional TFP models in both centralized and distributed training modes, ensuring higher accuracy and better privacy protection.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"26 4","pages":"4418-4431"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10908457/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate future traffic flow prediction is essential for decision-making in travel recommendations and route planning, aiming to reduce congestion and enhance traffic safety. Traditional traffic flow prediction models often face limitations in quality and structure, leading to increased training costs and inefficiencies, due to data scarcity and centralized training modes that compromise data privacy. To address these issues, we propose a model called 2MGTCN, which combines Multi-modal Graph Convolutional Networks (GCN) and Temporal Convolutional Networks (TCN) for Cross-city Traffic Flow Prediction (TFP). Our 2MGTCN model utilizes federated transfer learning (FTL) to transfer the model from the source to the target domain, mitigating data scarcity. It also incorporates GCN and TCN to capture both spatial and temporal information, enhancing cross-city adaptability. Additionally, Grey Relation Analysis (GRA) and Dynamic Time Warping (DTW) methods are applied to capture road relationships, and a Federated Parameter Aggregation based on Spatial Similarity (FPASS) algorithm is proposed for ensuring effective parameter aggregation by considering spatial similarity. Simulation results show that our 2MGTCN algorithm outperforms traditional TFP models in both centralized and distributed training modes, ensuring higher accuracy and better privacy protection.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Intelligent Transportation Systems
IEEE Transactions on Intelligent Transportation Systems 工程技术-工程:电子与电气
CiteScore
14.80
自引率
12.90%
发文量
1872
审稿时长
7.5 months
期刊介绍: The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信