Dynamic resistive switching of WOx-based memristor for associative learning activities, on-receptor, and reservoir computing

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Minseo Noh , Hyogeun Park , Sungjun Kim
{"title":"Dynamic resistive switching of WOx-based memristor for associative learning activities, on-receptor, and reservoir computing","authors":"Minseo Noh ,&nbsp;Hyogeun Park ,&nbsp;Sungjun Kim","doi":"10.1016/j.chaos.2025.116381","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid expansion of data driven by the fourth industrial revolution has revealed significant limitations in conventional computing architectures, particularly in their ability to efficiently process vast amounts of data. Neuromorphic computing, which draws inspiration from the brain's parallel processing capabilities and efficiency, presents a promising solution to overcome these limitations. This study introduces a TiN/WO<sub>x</sub>/Pt memory device capable of emulating both nociceptive and synaptic behaviors, highlighting its potential for neuromorphic computing applications. The device successfully replicates key nociceptive functions, including threshold response, allodynia, and hyperalgesia, through the migration of oxygen ions and vacancies within the interface. Furthermore, it demonstrates a range of synaptic plasticity behaviors, such as spike-number-dependent plasticity, spike-amplitude-dependent plasticity, spike-rate-dependent plasticity, and paired-pulse facilitation. In addition, the device achieves 4-bit multibit reservoir computing with high accuracy, showcasing its ability to perform adaptive learning and nonlinear data processing. These results underline the TiN/WO<sub>x</sub>/Pt memory device's promise for mimicking biological functions and its significant potential in the development of advanced neuromorphic computing systems.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"196 ","pages":"Article 116381"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925003947","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid expansion of data driven by the fourth industrial revolution has revealed significant limitations in conventional computing architectures, particularly in their ability to efficiently process vast amounts of data. Neuromorphic computing, which draws inspiration from the brain's parallel processing capabilities and efficiency, presents a promising solution to overcome these limitations. This study introduces a TiN/WOx/Pt memory device capable of emulating both nociceptive and synaptic behaviors, highlighting its potential for neuromorphic computing applications. The device successfully replicates key nociceptive functions, including threshold response, allodynia, and hyperalgesia, through the migration of oxygen ions and vacancies within the interface. Furthermore, it demonstrates a range of synaptic plasticity behaviors, such as spike-number-dependent plasticity, spike-amplitude-dependent plasticity, spike-rate-dependent plasticity, and paired-pulse facilitation. In addition, the device achieves 4-bit multibit reservoir computing with high accuracy, showcasing its ability to perform adaptive learning and nonlinear data processing. These results underline the TiN/WOx/Pt memory device's promise for mimicking biological functions and its significant potential in the development of advanced neuromorphic computing systems.
基于 WOx 的动态电阻开关记忆晶体管用于联想学习活动、感应器和水库计算
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信