M-shape, lump, homoclinic breather and other soliton interaction of the Landau-Ginzburg-Higgs model in nonlinear fiber optics

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Abdullah , Ghaus ur Rahman , J.F. Gómez-Aguilar
{"title":"M-shape, lump, homoclinic breather and other soliton interaction of the Landau-Ginzburg-Higgs model in nonlinear fiber optics","authors":"Abdullah ,&nbsp;Ghaus ur Rahman ,&nbsp;J.F. Gómez-Aguilar","doi":"10.1016/j.chaos.2025.116335","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the intricate dynamics of different types of solitons and their interactions within the framework of the Landau-Ginzburg-Higgs model as applied to nonlinear fiber optics. Employing the Hirota bilinear transformation technique, we derive a range of analytical soliton solutions, and demonstrating their rich and diverse behaviors. The proposed methodology provides a more comprehensive framework for analyzing transport processes by expanding these equations. M-shaped rational wave solutions with one kink, M-shaped rational waves with two kinks having bright and dark effects, periodic cross-kink with bright and dark waves, lump mixed-type waves, homoclinic breathers, and breather waves are among the various types of solitons. These many waveforms make it clear, soliton movement within optical fiber is extremely essential. They also offer valuable information that could influence soliton-based signal processing, optical communication systems, drug research, and other scientific fields. This extension of methodology aids in understanding the intricacy of soliton transport and identifying the intricate mechanisms. Additionally, by selecting various constant values, we create 3D and related contour plots to be aware of the physical interpretations of these solutions. Therefore, we get superior physical behaviors from these solutions.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"196 ","pages":"Article 116335"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925003480","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the intricate dynamics of different types of solitons and their interactions within the framework of the Landau-Ginzburg-Higgs model as applied to nonlinear fiber optics. Employing the Hirota bilinear transformation technique, we derive a range of analytical soliton solutions, and demonstrating their rich and diverse behaviors. The proposed methodology provides a more comprehensive framework for analyzing transport processes by expanding these equations. M-shaped rational wave solutions with one kink, M-shaped rational waves with two kinks having bright and dark effects, periodic cross-kink with bright and dark waves, lump mixed-type waves, homoclinic breathers, and breather waves are among the various types of solitons. These many waveforms make it clear, soliton movement within optical fiber is extremely essential. They also offer valuable information that could influence soliton-based signal processing, optical communication systems, drug research, and other scientific fields. This extension of methodology aids in understanding the intricacy of soliton transport and identifying the intricate mechanisms. Additionally, by selecting various constant values, we create 3D and related contour plots to be aware of the physical interpretations of these solutions. Therefore, we get superior physical behaviors from these solutions.
非线性光纤中兰道-金兹堡-希格斯模型的 M 形、块状、同脉呼吸和其他孤子相互作用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信