Structural and mechanical properties of W-Cu compounds characterized by a neural-network-based potential

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jianchuan Liu , Tao Chen , Sheng Mao , Mohan Chen
{"title":"Structural and mechanical properties of W-Cu compounds characterized by a neural-network-based potential","authors":"Jianchuan Liu ,&nbsp;Tao Chen ,&nbsp;Sheng Mao ,&nbsp;Mohan Chen","doi":"10.1016/j.commatsci.2025.113825","DOIUrl":null,"url":null,"abstract":"<div><div>We develop a neural-network deep potential (DP) model spanning 0–3,000 K and 0–10 GPa, trained on density functional theory data across the full concentration Cu<sub>x</sub>W<sub>100-x</sub> compounds. We systematically investigate the structural and mechanical properties of W-Cu alloys. The results show that the bulk modulus (<em>B</em>) and Young’s modulus (<em>E</em>) of W-Cu alloys exhibit a linear decline as the Cu content increases, indicating a softening trend in the Cu<sub>x</sub>W<sub>100-x</sub> compounds as the Cu concentration rises. Besides, a brittle-to-ductile transition in the deformation mode predicted is predicted at around 37.5 at. % Cu content. Moreover, tensile testing demonstrates that Cu-poor region effectively block shear band advancement, simultaneously stimulating nucleation of secondary shear bands in adjacent Cu-rich domains. The results are anticipated to aid in exploring the physical mechanisms underlying the complex phenomena of W-Cu systems.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"253 ","pages":"Article 113825"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625001685","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a neural-network deep potential (DP) model spanning 0–3,000 K and 0–10 GPa, trained on density functional theory data across the full concentration CuxW100-x compounds. We systematically investigate the structural and mechanical properties of W-Cu alloys. The results show that the bulk modulus (B) and Young’s modulus (E) of W-Cu alloys exhibit a linear decline as the Cu content increases, indicating a softening trend in the CuxW100-x compounds as the Cu concentration rises. Besides, a brittle-to-ductile transition in the deformation mode predicted is predicted at around 37.5 at. % Cu content. Moreover, tensile testing demonstrates that Cu-poor region effectively block shear band advancement, simultaneously stimulating nucleation of secondary shear bands in adjacent Cu-rich domains. The results are anticipated to aid in exploring the physical mechanisms underlying the complex phenomena of W-Cu systems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信