Handwriting strokes as biomarkers for Alzheimer’s disease prediction: A novel machine learning approach

IF 7 2区 医学 Q1 BIOLOGY
Emanuele Nardone , Claudio De Stefano , Nicole Dalia Cilia , Francesco Fontanella
{"title":"Handwriting strokes as biomarkers for Alzheimer’s disease prediction: A novel machine learning approach","authors":"Emanuele Nardone ,&nbsp;Claudio De Stefano ,&nbsp;Nicole Dalia Cilia ,&nbsp;Francesco Fontanella","doi":"10.1016/j.compbiomed.2025.110039","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, machine learning-based handwriting analysis has emerged as a valuable tool for supporting the early diagnosis of Alzheimer’s disease and predicting its progression. Traditional approaches represent handwriting tasks using a single feature vector, where each feature is computed as the mean over elementary handwriting traits or strokes. We propose a novel approach that analyzes each stroke individually, preserving fine-grained movement information that is critical for detecting subtle handwriting changes that may indicate cognitive decline. We evaluated this method on 34 handwriting tasks collected from 174 participants, extracting dynamic and static features from both on-paper and in-air movements. Using a machine learning framework including classification strategies, feature selection techniques, and ensemble methods like ranking-based and stacking approaches, we were able to effectively model stroke-level variations. The ranking-based ensemble achieved the highest accuracy of 80.18% using all features while stacking performed best for in-air movements with 76.67% accuracy. Feature importance analysis through SHAP revealed that certain tasks, particularly sentence writing under dictation, were consistently more predictive. The experimental results demonstrate the effectiveness of our stroke-level analysis approach, which outperformed aggregated statistical methods on 24 out of 34 handwriting tasks, validating the diagnostic value of examining individual movement patterns.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"190 ","pages":"Article 110039"},"PeriodicalIF":7.0000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525003907","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, machine learning-based handwriting analysis has emerged as a valuable tool for supporting the early diagnosis of Alzheimer’s disease and predicting its progression. Traditional approaches represent handwriting tasks using a single feature vector, where each feature is computed as the mean over elementary handwriting traits or strokes. We propose a novel approach that analyzes each stroke individually, preserving fine-grained movement information that is critical for detecting subtle handwriting changes that may indicate cognitive decline. We evaluated this method on 34 handwriting tasks collected from 174 participants, extracting dynamic and static features from both on-paper and in-air movements. Using a machine learning framework including classification strategies, feature selection techniques, and ensemble methods like ranking-based and stacking approaches, we were able to effectively model stroke-level variations. The ranking-based ensemble achieved the highest accuracy of 80.18% using all features while stacking performed best for in-air movements with 76.67% accuracy. Feature importance analysis through SHAP revealed that certain tasks, particularly sentence writing under dictation, were consistently more predictive. The experimental results demonstrate the effectiveness of our stroke-level analysis approach, which outperformed aggregated statistical methods on 24 out of 34 handwriting tasks, validating the diagnostic value of examining individual movement patterns.
手写笔画是预测阿尔茨海默病的生物标志物:新型机器学习方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信