{"title":"Improving facial emotion recognition through dataset merging and balanced training strategies","authors":"Serap Kırbız","doi":"10.1016/j.jfranklin.2025.107659","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a deep learning framework is proposed for automatic facial emotion based on deep convolutional networks. In order to increase the generalization ability and the robustness of the method, the dataset size is increased by merging three publicly available facial emotion datasets: CK+, FER+ and KDEF. Despite the increase in dataset size, the minority classes still suffer from insufficient number of training samples, leading to data imbalance. The data imbalance problem is minimized by online and offline augmentation techniques and random weighted sampling. Experimental results demonstrate that the proposed method can recognize the seven basic emotions with 82% accuracy. The results demonstrate the effectiveness of the proposed approach in tackling the challenges of data imbalance and improving classification performance in facial emotion recognition.</div></div>","PeriodicalId":17283,"journal":{"name":"Journal of The Franklin Institute-engineering and Applied Mathematics","volume":"362 7","pages":"Article 107659"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Franklin Institute-engineering and Applied Mathematics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001600322500153X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a deep learning framework is proposed for automatic facial emotion based on deep convolutional networks. In order to increase the generalization ability and the robustness of the method, the dataset size is increased by merging three publicly available facial emotion datasets: CK+, FER+ and KDEF. Despite the increase in dataset size, the minority classes still suffer from insufficient number of training samples, leading to data imbalance. The data imbalance problem is minimized by online and offline augmentation techniques and random weighted sampling. Experimental results demonstrate that the proposed method can recognize the seven basic emotions with 82% accuracy. The results demonstrate the effectiveness of the proposed approach in tackling the challenges of data imbalance and improving classification performance in facial emotion recognition.
期刊介绍:
The Journal of The Franklin Institute has an established reputation for publishing high-quality papers in the field of engineering and applied mathematics. Its current focus is on control systems, complex networks and dynamic systems, signal processing and communications and their applications. All submitted papers are peer-reviewed. The Journal will publish original research papers and research review papers of substance. Papers and special focus issues are judged upon possible lasting value, which has been and continues to be the strength of the Journal of The Franklin Institute.