Synergy for Enhancing Strength and Toughness of Diamond through Polytypic Heterointerface

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL
Tengfei Xu, Zhaorui Liu, Dominik Legut, Ruifeng Zhang
{"title":"Synergy for Enhancing Strength and Toughness of Diamond through Polytypic Heterointerface","authors":"Tengfei Xu, Zhaorui Liu, Dominik Legut, Ruifeng Zhang","doi":"10.1021/acs.jpcc.5c00702","DOIUrl":null,"url":null,"abstract":"Hierarchical diamond nanocomposites, incorporating diverse coherently interfaced diamond polytypes, exhibit remarkable fracture toughness while maintaining exceptional hardness. However, the underlying mechanisms governing the strengthening and toughening of these polytypic heterointerfaces (PHIs) remain elusive. In this study, we employed first-principles approaches to derive the ideal strength and Peierls stress, conducting a comprehensive investigation into the influence of various PHIs on the plasticity of nanostructured diamond. A ubiquitous strengthening effect was observed across all PHI types under uniform shear deformation, as the introduction of PHIs invariably aligned a portion of the crystal in the hard shear direction, yielding strength comparable to that of the nanotwinned diamond. Surprisingly, graphitization and bond collapse were suppressed through a sequential transformation of stacking sequences, including an experimentally observed non-3C to 3C polytype transition. This phenomenon was attributed to the systematic bond realignment driven by continuous metallization confined to specific atomic layers. The heterointerface-mediated bonding reorganization effectively dissipated energy through phase transitions, thereby achieving supertoughness. Under localized deformation, all PHIs were found to enhance the barrier against parallel slip of 1/2 ⟨110⟩ shuffle-set full dislocations and 1/6 ⟨112⟩ glide-set partial dislocations, leading to a pronounced strengthening effect. These findings not only deepen our fundamental understanding of the synergistic strengthening and toughening of diamond through PHIs but also offer valuable insights for the design of other superhard materials and engineering ceramics via coherent heterointerfaces.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"36 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.5c00702","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hierarchical diamond nanocomposites, incorporating diverse coherently interfaced diamond polytypes, exhibit remarkable fracture toughness while maintaining exceptional hardness. However, the underlying mechanisms governing the strengthening and toughening of these polytypic heterointerfaces (PHIs) remain elusive. In this study, we employed first-principles approaches to derive the ideal strength and Peierls stress, conducting a comprehensive investigation into the influence of various PHIs on the plasticity of nanostructured diamond. A ubiquitous strengthening effect was observed across all PHI types under uniform shear deformation, as the introduction of PHIs invariably aligned a portion of the crystal in the hard shear direction, yielding strength comparable to that of the nanotwinned diamond. Surprisingly, graphitization and bond collapse were suppressed through a sequential transformation of stacking sequences, including an experimentally observed non-3C to 3C polytype transition. This phenomenon was attributed to the systematic bond realignment driven by continuous metallization confined to specific atomic layers. The heterointerface-mediated bonding reorganization effectively dissipated energy through phase transitions, thereby achieving supertoughness. Under localized deformation, all PHIs were found to enhance the barrier against parallel slip of 1/2 ⟨110⟩ shuffle-set full dislocations and 1/6 ⟨112⟩ glide-set partial dislocations, leading to a pronounced strengthening effect. These findings not only deepen our fundamental understanding of the synergistic strengthening and toughening of diamond through PHIs but also offer valuable insights for the design of other superhard materials and engineering ceramics via coherent heterointerfaces.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信