Origin of the Indirect–Direct Band Gap Transition in GaP and Its Alloys

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL
Yatian Ning, Man Wang, Xubo Jia, Honggang Ye, Jinying Yu, Yelong Wu
{"title":"Origin of the Indirect–Direct Band Gap Transition in GaP and Its Alloys","authors":"Yatian Ning, Man Wang, Xubo Jia, Honggang Ye, Jinying Yu, Yelong Wu","doi":"10.1021/acs.jpcc.4c08736","DOIUrl":null,"url":null,"abstract":"Indirect GaP-based photoelectric devices often exhibit low photoelectric conversion efficiencies. Numerous research efforts have been undertaken to facilitate indirect–direct transitions; however, a comprehensive understanding of the nature of these transitions remains elusive. In this study, we demonstrate that the occupied d orbitals, strain, and electronegativity are the three critical factors influencing the indirect–direct transition in GaP. Elevating the occupied d orbitals can raise the conduction band <i>X</i> and <i>L</i> valleys through s–d and p–d coupling while leaving the Γ valley unchanged, thereby facilitating the transition. The <i>X</i> valley possesses positive deformation potentials, whereas the Γ and <i>L</i> valleys exhibit negative ones. Consequently, a mere 0.6% tensile strain can convert the GaP band gap from indirect to direct. Additionally, larger electronegativity anions can lower the conduction band Γ valley via s–s coupling, further triggering the transition. Further investigation into the mechanisms at play in GaP alloys reveals that strain is the most sensitive factor and is crucial under most conditions. Based on these underlying mechanisms, we propose new alloys such as (GaP)<sub>1–<i>x</i></sub>(ZnO)<sub><i>x</i></sub> and (GaP)<sub>1–<i>x</i></sub>(ZnS)<sub><i>x</i></sub>. This work provides a framework for analyzing semiconductor indirect–direct transitions and offers insights for designing photoelectric devices based on indirect band gap semiconductors.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"70 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c08736","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Indirect GaP-based photoelectric devices often exhibit low photoelectric conversion efficiencies. Numerous research efforts have been undertaken to facilitate indirect–direct transitions; however, a comprehensive understanding of the nature of these transitions remains elusive. In this study, we demonstrate that the occupied d orbitals, strain, and electronegativity are the three critical factors influencing the indirect–direct transition in GaP. Elevating the occupied d orbitals can raise the conduction band X and L valleys through s–d and p–d coupling while leaving the Γ valley unchanged, thereby facilitating the transition. The X valley possesses positive deformation potentials, whereas the Γ and L valleys exhibit negative ones. Consequently, a mere 0.6% tensile strain can convert the GaP band gap from indirect to direct. Additionally, larger electronegativity anions can lower the conduction band Γ valley via s–s coupling, further triggering the transition. Further investigation into the mechanisms at play in GaP alloys reveals that strain is the most sensitive factor and is crucial under most conditions. Based on these underlying mechanisms, we propose new alloys such as (GaP)1–x(ZnO)x and (GaP)1–x(ZnS)x. This work provides a framework for analyzing semiconductor indirect–direct transitions and offers insights for designing photoelectric devices based on indirect band gap semiconductors.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信