Controlling Reaction Pathways of Ethylene Hydroformylation Using Isolated Bimetallic Rhodium–Cobalt Sites

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yong Yuan, Tianyou Mou, Sooyeon Hwang, William N. Porter, Ping Liu, Jingguang G. Chen
{"title":"Controlling Reaction Pathways of Ethylene Hydroformylation Using Isolated Bimetallic Rhodium–Cobalt Sites","authors":"Yong Yuan, Tianyou Mou, Sooyeon Hwang, William N. Porter, Ping Liu, Jingguang G. Chen","doi":"10.1021/jacs.5c01105","DOIUrl":null,"url":null,"abstract":"Designing efficient ligand-free heterogeneous catalysts for ethylene hydroformylation to produce C<sub>3</sub> oxygenates is of importance for both fundamental research and practical applications, but it is often hindered by insufficient catalytic activity and selectivity. This work designs isolated rhodium–cobalt (Rh–Co) sites confined within a ZSM-5 zeolite to enhance ethylene hydroformylation rates and selectivity while maintaining catalyst stability. By adjusting the Co/Al ratio in Co-ZSM-5, different sizes of Co are formed; subsequent Rh introduction produces isolated Rh<sub>1</sub>Co<i><sub><i>x</i></sub></i> clusters with different Rh–Co coordination numbers (CNs). In-situ characterizations and density functional theory calculations reveal that a Rh–Co CN of 3, corresponding to an isolated Rh<sub>1</sub>Co<sub>3</sub> site, provides optimal bindings to reaction intermediates and thus achieves the highest hydroformylation rates among supported Rh-based catalysts. This study demonstrates the role of coordination-tuning via a secondary metal in effectively controlling the reaction pathway over single Rh atom catalysts.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"11 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c01105","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Designing efficient ligand-free heterogeneous catalysts for ethylene hydroformylation to produce C3 oxygenates is of importance for both fundamental research and practical applications, but it is often hindered by insufficient catalytic activity and selectivity. This work designs isolated rhodium–cobalt (Rh–Co) sites confined within a ZSM-5 zeolite to enhance ethylene hydroformylation rates and selectivity while maintaining catalyst stability. By adjusting the Co/Al ratio in Co-ZSM-5, different sizes of Co are formed; subsequent Rh introduction produces isolated Rh1Cox clusters with different Rh–Co coordination numbers (CNs). In-situ characterizations and density functional theory calculations reveal that a Rh–Co CN of 3, corresponding to an isolated Rh1Co3 site, provides optimal bindings to reaction intermediates and thus achieves the highest hydroformylation rates among supported Rh-based catalysts. This study demonstrates the role of coordination-tuning via a secondary metal in effectively controlling the reaction pathway over single Rh atom catalysts.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信