Zhongjie Kang, Dade Song, Hushun Zhang, Long Liang, Chengbin Zhang, Tao Jiang, Fei Zhu, Ying Xiong
{"title":"Exploring the drivers of otolith Sr/Ca during the early life stages of Larimichthys polyactis: insights from cultured and wild populations","authors":"Zhongjie Kang, Dade Song, Hushun Zhang, Long Liang, Chengbin Zhang, Tao Jiang, Fei Zhu, Ying Xiong","doi":"10.3389/fmars.2025.1513070","DOIUrl":null,"url":null,"abstract":"Otolith Sr/Ca profiles are widely used to investigate early life migration and habitat use in both diadromous and oceanodromous fishes. This study focuses on <jats:italic>Larimichthys polyactis</jats:italic>, an oceanodromous species of significant ecological and commercial importance in East Asian waters. This study investigates the influence of environmental factors on the otolith Sr/Ca ratios during its early life stages (ELS). In Experiment A, we analyzed both laboratory-reared specimens—maintained under stable temperature (19–21°C) and salinity (27–28 PSU) conditions—and wild-captured specimens. The results revealed a consistent decline in Sr/Ca ratios throughout the ELS in both groups, suggesting that temperature and salinity may not be the primary drivers of otolith Sr/Ca ratios during early development. In Experiment B, Sr/Ca ratios in the core (incubation stage) and edge (recently spawned stage) zones of otoliths from both wild and laboratory-reared adult fish were compared. Sr/Ca ratios were significantly higher in the core zone than in the edge zone, indicating that maternal influences are may not be the main cause of elevated Sr/Ca ratios in the otolith core. Collectively, these findings suggest that otolith Sr/Ca ratios during ELS in <jats:italic>L. polyactis</jats:italic> are more affected by the ontogenetic developmental stage than by environmental factors such as temperature, salinity, or maternal effects. This challenges previous assumptions about the dominance of environmental factors in shaping otolith chemistry and highlights the need for more nuanced interpretations of Sr/Ca data, especially in studies of oceanodromous fishes. When utilizing otolith microchemistry to reconstruct life history, it is essential to minimize physiological effects through controlled culture experiments to ensure the accuracy and reliability of the results.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"132 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2025.1513070","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Otolith Sr/Ca profiles are widely used to investigate early life migration and habitat use in both diadromous and oceanodromous fishes. This study focuses on Larimichthys polyactis, an oceanodromous species of significant ecological and commercial importance in East Asian waters. This study investigates the influence of environmental factors on the otolith Sr/Ca ratios during its early life stages (ELS). In Experiment A, we analyzed both laboratory-reared specimens—maintained under stable temperature (19–21°C) and salinity (27–28 PSU) conditions—and wild-captured specimens. The results revealed a consistent decline in Sr/Ca ratios throughout the ELS in both groups, suggesting that temperature and salinity may not be the primary drivers of otolith Sr/Ca ratios during early development. In Experiment B, Sr/Ca ratios in the core (incubation stage) and edge (recently spawned stage) zones of otoliths from both wild and laboratory-reared adult fish were compared. Sr/Ca ratios were significantly higher in the core zone than in the edge zone, indicating that maternal influences are may not be the main cause of elevated Sr/Ca ratios in the otolith core. Collectively, these findings suggest that otolith Sr/Ca ratios during ELS in L. polyactis are more affected by the ontogenetic developmental stage than by environmental factors such as temperature, salinity, or maternal effects. This challenges previous assumptions about the dominance of environmental factors in shaping otolith chemistry and highlights the need for more nuanced interpretations of Sr/Ca data, especially in studies of oceanodromous fishes. When utilizing otolith microchemistry to reconstruct life history, it is essential to minimize physiological effects through controlled culture experiments to ensure the accuracy and reliability of the results.
期刊介绍:
Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide.
With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.