Sambuddha Chattopadhyay, Christian J. Eckhardt, Dante M. Kennes, Michael A. Sentef, Dongbin Shin, Angel Rubio, Andrea Cavalleri, Eugene A. Demler, Marios H. Michael
{"title":"Metastable photo-induced superconductivity far above Tc","authors":"Sambuddha Chattopadhyay, Christian J. Eckhardt, Dante M. Kennes, Michael A. Sentef, Dongbin Shin, Angel Rubio, Andrea Cavalleri, Eugene A. Demler, Marios H. Michael","doi":"10.1038/s41535-025-00750-x","DOIUrl":null,"url":null,"abstract":"<p>Inspired by the striking discovery of metastable superconductivity in K<sub>3</sub>C<sub>60</sub> at 100K, far above <i>T</i><sub>c</sub> = 20 K, we discuss possible mechanisms for long-lived, photo-induced superconductivity. Starting from a model of optically-driven Raman phonons coupled to inter-band electronic transitions, we develop a microscopic mechanism for photo-controlling the pairing interaction. Leveraging this mechanism, we first investigate long-lived superconductivity arising from the thermodynamic metastable trapping of the driven phonon. We then propose an alternative route, where the superconducting gap created by an optical drive leads to a dynamical bottleneck in the equilibration of quasi-particles. We conclude by discussing the implications of both scenarios for experiments that can be used to discriminate between them. Our work provides falsifiable explanations for the nanosecond-scale photo-induced superconductivity found in K<sub>3</sub>C<sub>60</sub>, while simultaneously offering a theoretical basis for exploring metastable superconductivity in other quantum materials.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"36 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-025-00750-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Inspired by the striking discovery of metastable superconductivity in K3C60 at 100K, far above Tc = 20 K, we discuss possible mechanisms for long-lived, photo-induced superconductivity. Starting from a model of optically-driven Raman phonons coupled to inter-band electronic transitions, we develop a microscopic mechanism for photo-controlling the pairing interaction. Leveraging this mechanism, we first investigate long-lived superconductivity arising from the thermodynamic metastable trapping of the driven phonon. We then propose an alternative route, where the superconducting gap created by an optical drive leads to a dynamical bottleneck in the equilibration of quasi-particles. We conclude by discussing the implications of both scenarios for experiments that can be used to discriminate between them. Our work provides falsifiable explanations for the nanosecond-scale photo-induced superconductivity found in K3C60, while simultaneously offering a theoretical basis for exploring metastable superconductivity in other quantum materials.
期刊介绍:
npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.