HEXA-FC protein therapy increases skeletal muscle glucose uptake and improves glycaemic control in mice with insulin resistance and in a mouse model of type 2 diabetes

IF 8.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Magdalene K. Montgomery, Sihan Lin, Chieh-Hsin Yang, Krishneel Prasad, Zhi Li Cheng, Jacqueline Bayliss, Michael G. Leeming, Nicholas A. Williamson, Kim Loh, Li Dong, Matthew J. Watt
{"title":"HEXA-FC protein therapy increases skeletal muscle glucose uptake and improves glycaemic control in mice with insulin resistance and in a mouse model of type 2 diabetes","authors":"Magdalene K. Montgomery, Sihan Lin, Chieh-Hsin Yang, Krishneel Prasad, Zhi Li Cheng, Jacqueline Bayliss, Michael G. Leeming, Nicholas A. Williamson, Kim Loh, Li Dong, Matthew J. Watt","doi":"10.1007/s00125-025-06413-7","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Aims/hypothesis</h3><p>Type 2 diabetes is a chronic metabolic disorder characterised by insulin resistance and sustained hyperglycaemia, and is a major cause of blindness, kidney failure, heart attacks and stroke. Our team has recently identified hexosaminidase A (HEXA) as an endocrine factor secreted by the liver that regulates sphingolipid metabolism in skeletal muscle. Specifically, HEXA converts GM2 to GM3 gangliosides within cell-surface lipid rafts. Remodelling of ganglioside composition by HEXA enhances IGF1 signalling in skeletal muscle, increasing muscle glucose uptake and improving blood glucose control.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>We produced a long-acting HEXA-FC fusion protein (murine HEXA and the fragment crystallisable [FC] region from IgG1) and evaluated the effects of chronic bi-weekly HEXA-FC administration (1 mg/kg body weight) on glycaemic control in C57BL/6 mice with diet-induced obesity and insulin resistance and the <i>db</i>/<i>db</i> mouse model of severe type 2 diabetes. Outcome measures included glucose and insulin tolerance, including a stable isotope-labelled GTT and assessment of tissue-specific glucose disposal, as well as proteomics analysis to define changes in skeletal muscle metabolism.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Chronic administration of a long-acting recombinant HEXA-FC fusion protein led to improvements in random blood glucose, fasting blood glucose and glucose tolerance, driven by increased glucose disposal into skeletal muscle, effects that were associated with enhancement of IGF1 signalling in muscle.</p><h3 data-test=\"abstract-sub-heading\">Conclusions/interpretation</h3><p>Given that skeletal muscle is a primary site of insulin resistance in individuals with type 2 diabetes, HEXA-FC protein therapy may open new avenues for therapeutic advancement in type 2 diabetes.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":11164,"journal":{"name":"Diabetologia","volume":"30 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetologia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00125-025-06413-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Aims/hypothesis

Type 2 diabetes is a chronic metabolic disorder characterised by insulin resistance and sustained hyperglycaemia, and is a major cause of blindness, kidney failure, heart attacks and stroke. Our team has recently identified hexosaminidase A (HEXA) as an endocrine factor secreted by the liver that regulates sphingolipid metabolism in skeletal muscle. Specifically, HEXA converts GM2 to GM3 gangliosides within cell-surface lipid rafts. Remodelling of ganglioside composition by HEXA enhances IGF1 signalling in skeletal muscle, increasing muscle glucose uptake and improving blood glucose control.

Methods

We produced a long-acting HEXA-FC fusion protein (murine HEXA and the fragment crystallisable [FC] region from IgG1) and evaluated the effects of chronic bi-weekly HEXA-FC administration (1 mg/kg body weight) on glycaemic control in C57BL/6 mice with diet-induced obesity and insulin resistance and the db/db mouse model of severe type 2 diabetes. Outcome measures included glucose and insulin tolerance, including a stable isotope-labelled GTT and assessment of tissue-specific glucose disposal, as well as proteomics analysis to define changes in skeletal muscle metabolism.

Results

Chronic administration of a long-acting recombinant HEXA-FC fusion protein led to improvements in random blood glucose, fasting blood glucose and glucose tolerance, driven by increased glucose disposal into skeletal muscle, effects that were associated with enhancement of IGF1 signalling in muscle.

Conclusions/interpretation

Given that skeletal muscle is a primary site of insulin resistance in individuals with type 2 diabetes, HEXA-FC protein therapy may open new avenues for therapeutic advancement in type 2 diabetes.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Diabetologia
Diabetologia 医学-内分泌学与代谢
CiteScore
18.10
自引率
2.40%
发文量
193
审稿时长
1 months
期刊介绍: Diabetologia, the authoritative journal dedicated to diabetes research, holds high visibility through society membership, libraries, and social media. As the official journal of the European Association for the Study of Diabetes, it is ranked in the top quartile of the 2019 JCR Impact Factors in the Endocrinology & Metabolism category. The journal boasts dedicated and expert editorial teams committed to supporting authors throughout the peer review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信