{"title":"No-regret and low-regret controls of space-time fractional parabolic Sturm-Liouville equations in a star graph","authors":"Gisèle Mophou, Maryse Moutamal, Mahamadi Warma","doi":"10.1007/s13540-025-00396-3","DOIUrl":null,"url":null,"abstract":"<p>We are concerned with a space-time fractional parabolic initial-boundary value problem of Sturm-Liouville type in a general star graph with mixed Dirichlet and Neumann boundary controls. We first give several existence, uniqueness and regularity results of weak and very-weak solutions. Using the notion of no-regret control introduced by Lions, we prove the existence, uniqueness, and characterize the low regret control of a quadratic boundary optimal control problem, then we prove that this low regret control converges to the no-regret control and we provide the associated optimality systems and conditions that characterize that no-regret control.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"30 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-025-00396-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We are concerned with a space-time fractional parabolic initial-boundary value problem of Sturm-Liouville type in a general star graph with mixed Dirichlet and Neumann boundary controls. We first give several existence, uniqueness and regularity results of weak and very-weak solutions. Using the notion of no-regret control introduced by Lions, we prove the existence, uniqueness, and characterize the low regret control of a quadratic boundary optimal control problem, then we prove that this low regret control converges to the no-regret control and we provide the associated optimality systems and conditions that characterize that no-regret control.
期刊介绍:
Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.