The principled-parameterized approach to gravitational collapse

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Héloïse Delaporte and Astrid Eichhorn
{"title":"The principled-parameterized approach to gravitational collapse","authors":"Héloïse Delaporte and Astrid Eichhorn","doi":"10.1088/1475-7516/2025/03/074","DOIUrl":null,"url":null,"abstract":"New physics beyond General Relativity impacts black-hole spacetimes. The effects of new physics can be investigated in a largely theory-agnostic way by following the principled-parameterized approach. In this approach, a classical black-hole metric is upgraded by following a set of principles, such as regularity, i.e., the absence of curvature singularities. We expect these principles to hold in many theories beyond General Relativity. In the present paper, we implement this approach for time-dependent spacetimes describing gravitational collapse. We find that the Vaidya spacetime becomes regular through the same modification of the spacetime metric as stationary black-hole spacetimes [1–3]. We investigate null geodesics and find indications that the modification is even sufficient to render null geodesics future complete. Finally, we find that the modification of the spacetime structure results in violations of the null energy condition in a finite region inside the apparent horizon of the black hole that forms. Null geodesics are attracted to the boundary of this region, such that the new-physics effects are shielded from asymptotic observers. An exception occurs, if the classical spacetime has a naked singularity. Then, the upgraded spacetime is singularity-free and null geodesics from the regular core can escape towards asymptotic observers.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"30 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/03/074","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

New physics beyond General Relativity impacts black-hole spacetimes. The effects of new physics can be investigated in a largely theory-agnostic way by following the principled-parameterized approach. In this approach, a classical black-hole metric is upgraded by following a set of principles, such as regularity, i.e., the absence of curvature singularities. We expect these principles to hold in many theories beyond General Relativity. In the present paper, we implement this approach for time-dependent spacetimes describing gravitational collapse. We find that the Vaidya spacetime becomes regular through the same modification of the spacetime metric as stationary black-hole spacetimes [1–3]. We investigate null geodesics and find indications that the modification is even sufficient to render null geodesics future complete. Finally, we find that the modification of the spacetime structure results in violations of the null energy condition in a finite region inside the apparent horizon of the black hole that forms. Null geodesics are attracted to the boundary of this region, such that the new-physics effects are shielded from asymptotic observers. An exception occurs, if the classical spacetime has a naked singularity. Then, the upgraded spacetime is singularity-free and null geodesics from the regular core can escape towards asymptotic observers.
引力坍缩的原理参数化方法
超越广义相对论的新物理学影响黑洞时空。新物理学的影响可以通过遵循原则参数化方法以一种很大程度上与理论无关的方式进行研究。在这种方法中,经典的黑洞度量通过遵循一组原则来升级,例如规则性,即曲率奇点的缺失。我们期望这些原理在广义相对论之外的许多理论中都成立。在本文中,我们对描述引力坍缩的时变时空实现了这种方法。我们发现Vaidya时空通过与静止黑洞时空相同的时空度规修正而变得规则化[1-3]。我们研究了零测地线,并发现修改的迹象甚至足以使零测地线在未来完成。最后,我们发现时空结构的修正导致在形成的黑洞视界内的有限区域内违反零能条件。零测地线被吸引到这个区域的边界上,这样新的物理效应就被渐近观察者屏蔽了。如果经典时空有裸奇点,就会出现例外。然后,升级后的时空是无奇点的,并且正则核心的零测地线可以向渐近观察者逃逸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信