Clonal Hematopoietic Mutations in Plasma Cell Disorders: Clinical Subgroups and Shared Pathogenesis.

Xuezhu Wang, Liping Zuo, Yanying Yu, Xinyi Xiong, Jian Xu, Bing Qiao, Jia Chen, Hao Cai, Qi Yan, Hongxiao Han, Xin-Xin Cao, Jun Deng, Chunyan Sun, Jian Li
{"title":"Clonal Hematopoietic Mutations in Plasma Cell Disorders: Clinical Subgroups and Shared Pathogenesis.","authors":"Xuezhu Wang, Liping Zuo, Yanying Yu, Xinyi Xiong, Jian Xu, Bing Qiao, Jia Chen, Hao Cai, Qi Yan, Hongxiao Han, Xin-Xin Cao, Jun Deng, Chunyan Sun, Jian Li","doi":"10.1093/gpbjnl/qzaf027","DOIUrl":null,"url":null,"abstract":"<p><p>Plasma cell disorders (PCDs) are marked by the clonal proliferation of abnormal plasma cells and bone marrow plasma cells (BMPCs), causing various clinical complications. These PCDs include subtypes with distinct clinical features. Multiple myeloma (MM) and monoclonal gammopathy of undetermined significance (MGUS) are more common and relatively well-studied. In contrast, primary light-chain amyloidosis (AL) and POEMS syndrome (POEMS) are rare and remain less understood. To investigate the role of clonal hematopoietic (CH) mutations and potential interconnections in these diseases, we sequenced CH mutations in lymphoid and myeloid lineages, and myeloma driver gene mutations, in BMPCs from affected patients. Recurrent lymphoid CH mutations (in FAT1, KMT2D, MGA, and SYNE1) and myeloma driver gene mutations (in ZFHX3 and DIS3) were found in the dominant clonal and subclonal plasma cell populations. These moderately aging-associated lymphoid CH mutations had a higher burden in MM than in AL or POEMS. Binary matrix factorization of these mutations revealed the subgroups associated with progression-free survival (PFS) (observed in MM, AL, and POEMS), age at diagnosis (in AL and POEMS), serum differences in free light chain (dFLC) levels, and plasma cell burden (in AL), and serum vascular endothelial growth factor (VEGF) levels (in POEMS). Also, the poor PFS associated with MGA or SYNE1 mutations was confirmed across MM, AL, and POEMS. CH mutations partially explained the shared pathogenesis of MM, AL, POEMS, and MGUS, and helped identify patient subgroups with specific clinical features.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, proteomics & bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gpbjnl/qzaf027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Plasma cell disorders (PCDs) are marked by the clonal proliferation of abnormal plasma cells and bone marrow plasma cells (BMPCs), causing various clinical complications. These PCDs include subtypes with distinct clinical features. Multiple myeloma (MM) and monoclonal gammopathy of undetermined significance (MGUS) are more common and relatively well-studied. In contrast, primary light-chain amyloidosis (AL) and POEMS syndrome (POEMS) are rare and remain less understood. To investigate the role of clonal hematopoietic (CH) mutations and potential interconnections in these diseases, we sequenced CH mutations in lymphoid and myeloid lineages, and myeloma driver gene mutations, in BMPCs from affected patients. Recurrent lymphoid CH mutations (in FAT1, KMT2D, MGA, and SYNE1) and myeloma driver gene mutations (in ZFHX3 and DIS3) were found in the dominant clonal and subclonal plasma cell populations. These moderately aging-associated lymphoid CH mutations had a higher burden in MM than in AL or POEMS. Binary matrix factorization of these mutations revealed the subgroups associated with progression-free survival (PFS) (observed in MM, AL, and POEMS), age at diagnosis (in AL and POEMS), serum differences in free light chain (dFLC) levels, and plasma cell burden (in AL), and serum vascular endothelial growth factor (VEGF) levels (in POEMS). Also, the poor PFS associated with MGA or SYNE1 mutations was confirmed across MM, AL, and POEMS. CH mutations partially explained the shared pathogenesis of MM, AL, POEMS, and MGUS, and helped identify patient subgroups with specific clinical features.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信