{"title":"Audio-visual aware Foveated Rendering.","authors":"Xuehuai Shi, Yucheng Li, Jiaheng Li, Jian Wu, Jieming Yin, Xiaobai Chen, Lili Wang","doi":"10.1109/TVCG.2025.3554737","DOIUrl":null,"url":null,"abstract":"<p><p>With the increasing complexity of geometry and rendering effects in virtual reality (VR) scenes, existing foveated rendering methods for VR head-mounted displays (HMDs) struggle to meet users' demands for VR scene rendering with high frame rates (≥ 60 f ps for rendering binocular foveated images in VR scenes containing over 50M triangles). Current research validates that auditory content affects the perception of the human visual system (HVS). However, existing foveated rendering methods primarily model the HVS's eccentricity-dependent visual perception ability on the visual content in VR while ignoring the impact of auditory content on the HVS's visual perception. In this paper, we introduce an auditory-content-based perceived rendering quality analysis to quantify the impact of visual perception under different auditory conditions in foveated rendering. Based on the analysis results, we propose an audio-visual aware foveated rendering method (AvFR). AvFR first constructs an audio-visual feature-driven perception model that predicts the eccentricity-based visual perception in real time by combining the scene's audio-visual content, and then proposes a foveated rendering cost optimization algorithm to adaptively control the shading rate of different regions with the guidance of the perception model. In complex scenes with visual and auditory content containing over 1.17M triangles, AvFR renders high-quality binocular foveated images at an average frame rate of 116 f ps. The results of the main user study and performance evaluation validate that AvFR achieves significant performance improvement (up to 1.4× speedup) without lowering the perceived visual quality compared with the state-of-the-art VR-HMD foveated rendering method.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3554737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
With the increasing complexity of geometry and rendering effects in virtual reality (VR) scenes, existing foveated rendering methods for VR head-mounted displays (HMDs) struggle to meet users' demands for VR scene rendering with high frame rates (≥ 60 f ps for rendering binocular foveated images in VR scenes containing over 50M triangles). Current research validates that auditory content affects the perception of the human visual system (HVS). However, existing foveated rendering methods primarily model the HVS's eccentricity-dependent visual perception ability on the visual content in VR while ignoring the impact of auditory content on the HVS's visual perception. In this paper, we introduce an auditory-content-based perceived rendering quality analysis to quantify the impact of visual perception under different auditory conditions in foveated rendering. Based on the analysis results, we propose an audio-visual aware foveated rendering method (AvFR). AvFR first constructs an audio-visual feature-driven perception model that predicts the eccentricity-based visual perception in real time by combining the scene's audio-visual content, and then proposes a foveated rendering cost optimization algorithm to adaptively control the shading rate of different regions with the guidance of the perception model. In complex scenes with visual and auditory content containing over 1.17M triangles, AvFR renders high-quality binocular foveated images at an average frame rate of 116 f ps. The results of the main user study and performance evaluation validate that AvFR achieves significant performance improvement (up to 1.4× speedup) without lowering the perceived visual quality compared with the state-of-the-art VR-HMD foveated rendering method.