Negative dataset selection impacts machine learning-based predictors for multiple bacterial species promoters.

Marcelo González, Roberto E Durán, Michael Seeger, Mauricio Araya, Nicolás Jara
{"title":"Negative dataset selection impacts machine learning-based predictors for multiple bacterial species promoters.","authors":"Marcelo González, Roberto E Durán, Michael Seeger, Mauricio Araya, Nicolás Jara","doi":"10.1093/bioinformatics/btaf135","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Advances in bacterial promoter predictors based on machine learning have greatly improved identification metrics. However, existing models overlooked the impact of negative datasets, previously identified in GC-content discrepancies between positive and negative datasets in single-species models. This study aims to investigate whether multiple-species models for promoter classification are inherently biased due to the selection criteria of negative datasets. We further explore whether the generation of synthetic random sequences (SRS) that mimic GC-content distribution of promoters can partly reduce this bias.</p><p><strong>Results: </strong>Multiple-species predictors exhibited GC-content bias when using CDS as a negative dataset, suggested by specificity and sensibility metrics in a species-specific manner, and investigated by dimensionality reduction. We demonstrated a reduction in this bias by using the SRS dataset, with less detection of background noise in real genomic data. In both scenarios DNABERT showed the best metrics. These findings suggest that GC-balanced datasets can enhance the generalizability of promoter predictors across Bacteria.</p><p><strong>Availability and implementation: </strong>The source code of the experiments is freely available at https://github.com/maigonzalezh/MultispeciesPromoterClassifier.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11993300/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Advances in bacterial promoter predictors based on machine learning have greatly improved identification metrics. However, existing models overlooked the impact of negative datasets, previously identified in GC-content discrepancies between positive and negative datasets in single-species models. This study aims to investigate whether multiple-species models for promoter classification are inherently biased due to the selection criteria of negative datasets. We further explore whether the generation of synthetic random sequences (SRS) that mimic GC-content distribution of promoters can partly reduce this bias.

Results: Multiple-species predictors exhibited GC-content bias when using CDS as a negative dataset, suggested by specificity and sensibility metrics in a species-specific manner, and investigated by dimensionality reduction. We demonstrated a reduction in this bias by using the SRS dataset, with less detection of background noise in real genomic data. In both scenarios DNABERT showed the best metrics. These findings suggest that GC-balanced datasets can enhance the generalizability of promoter predictors across Bacteria.

Availability and implementation: The source code of the experiments is freely available at https://github.com/maigonzalezh/MultispeciesPromoterClassifier.

负数据集选择影响基于机器学习的多种细菌物种启动子的预测。
动机:基于机器学习的细菌启动子预测器的进步极大地改善了识别指标。然而,现有的模型忽略了阴性数据集的影响,之前在单物种模型中阳性和阴性数据集之间的gc含量差异中发现了这一点。本研究旨在探讨多物种启动子分类模型是否因负数据集的选择标准而存在固有偏差。我们进一步探索模拟启动子gc含量分布的合成随机序列(SRS)是否可以部分减少这种偏差。结果:当使用CDS作为负数据集时,多物种预测因子表现出gc含量偏差,这是由物种特异性的特异性和敏感性指标提出的,并通过降维进行了研究。我们通过使用SRS数据集证明了这种偏差的减少,在真实基因组数据中较少检测到背景噪声。在这两种情况下,DNABERT都显示出最好的指标。这些发现表明,gc平衡数据集可以提高启动子预测因子在细菌中的通用性。可用性和实现:实验的源代码可以在https://github.com/maigonzalezh/MultispeciesPromoterClassifier上免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信