Generative Large Language Model-Powered Conversational AI App for Personalized Risk Assessment: Case Study in COVID-19.

JMIR AI Pub Date : 2025-03-27 DOI:10.2196/67363
Mohammad Amin Roshani, Xiangyu Zhou, Yao Qiang, Srinivasan Suresh, Steven Hicks, Usha Sethuraman, Dongxiao Zhu
{"title":"Generative Large Language Model-Powered Conversational AI App for Personalized Risk Assessment: Case Study in COVID-19.","authors":"Mohammad Amin Roshani, Xiangyu Zhou, Yao Qiang, Srinivasan Suresh, Steven Hicks, Usha Sethuraman, Dongxiao Zhu","doi":"10.2196/67363","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Large language models (LLMs) have demonstrated powerful capabilities in natural language tasks and are increasingly being integrated into health care for tasks like disease risk assessment. Traditional machine learning methods rely on structured data and coding, limiting their flexibility in dynamic clinical environments. This study presents a novel approach to disease risk assessment using generative LLMs through conversational artificial intelligence (AI), eliminating the need for programming.</p><p><strong>Objective: </strong>This study evaluates the use of pretrained generative LLMs, including LLaMA2-7b and Flan-T5-xl, for COVID-19 severity prediction with the goal of enabling a real-time, no-code, risk assessment solution through chatbot-based, question-answering interactions. To contextualize their performance, we compare LLMs with traditional machine learning classifiers, such as logistic regression, extreme gradient boosting (XGBoost), and random forest, which rely on tabular data.</p><p><strong>Methods: </strong>We fine-tuned LLMs using few-shot natural language examples from a dataset of 393 pediatric patients, developing a mobile app that integrates these models to provide real-time, no-code, COVID-19 severity risk assessment through clinician-patient interaction. The LLMs were compared with traditional classifiers across different experimental settings, using the area under the curve (AUC) as the primary evaluation metric. Feature importance derived from LLM attention layers was also analyzed to enhance interpretability.</p><p><strong>Results: </strong>Generative LLMs demonstrated strong performance in low-data settings. In zero-shot scenarios, the T0-3b-T model achieved an AUC of 0.75, while other LLMs, such as T0pp(8bit)-T and Flan-T5-xl-T, reached 0.67 and 0.69, respectively. At 2-shot settings, logistic regression and random forest achieved an AUC of 0.57, while Flan-T5-xl-T and T0-3b-T obtained 0.69 and 0.65, respectively. By 32-shot settings, Flan-T5-xl-T reached 0.70, similar to logistic regression (0.69) and random forest (0.68), while XGBoost improved to 0.65. These results illustrate the differences in how generative LLMs and traditional models handle the increasing data availability. LLMs perform well in low-data scenarios, whereas traditional models rely more on structured tabular data and labeled training examples. Furthermore, the mobile app provides real-time, COVID-19 severity assessments and personalized insights through attention-based feature importance, adding value to the clinical interpretation of the results.</p><p><strong>Conclusions: </strong>Generative LLMs provide a robust alternative to traditional classifiers, particularly in scenarios with limited labeled data. Their ability to handle unstructured inputs and deliver personalized, real-time assessments without coding makes them highly adaptable to clinical settings. This study underscores the potential of LLM-powered conversational artificial intelligence (AI) in health care and encourages further exploration of its use for real-time, disease risk assessment and decision-making support.</p>","PeriodicalId":73551,"journal":{"name":"JMIR AI","volume":"4 ","pages":"e67363"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/67363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Large language models (LLMs) have demonstrated powerful capabilities in natural language tasks and are increasingly being integrated into health care for tasks like disease risk assessment. Traditional machine learning methods rely on structured data and coding, limiting their flexibility in dynamic clinical environments. This study presents a novel approach to disease risk assessment using generative LLMs through conversational artificial intelligence (AI), eliminating the need for programming.

Objective: This study evaluates the use of pretrained generative LLMs, including LLaMA2-7b and Flan-T5-xl, for COVID-19 severity prediction with the goal of enabling a real-time, no-code, risk assessment solution through chatbot-based, question-answering interactions. To contextualize their performance, we compare LLMs with traditional machine learning classifiers, such as logistic regression, extreme gradient boosting (XGBoost), and random forest, which rely on tabular data.

Methods: We fine-tuned LLMs using few-shot natural language examples from a dataset of 393 pediatric patients, developing a mobile app that integrates these models to provide real-time, no-code, COVID-19 severity risk assessment through clinician-patient interaction. The LLMs were compared with traditional classifiers across different experimental settings, using the area under the curve (AUC) as the primary evaluation metric. Feature importance derived from LLM attention layers was also analyzed to enhance interpretability.

Results: Generative LLMs demonstrated strong performance in low-data settings. In zero-shot scenarios, the T0-3b-T model achieved an AUC of 0.75, while other LLMs, such as T0pp(8bit)-T and Flan-T5-xl-T, reached 0.67 and 0.69, respectively. At 2-shot settings, logistic regression and random forest achieved an AUC of 0.57, while Flan-T5-xl-T and T0-3b-T obtained 0.69 and 0.65, respectively. By 32-shot settings, Flan-T5-xl-T reached 0.70, similar to logistic regression (0.69) and random forest (0.68), while XGBoost improved to 0.65. These results illustrate the differences in how generative LLMs and traditional models handle the increasing data availability. LLMs perform well in low-data scenarios, whereas traditional models rely more on structured tabular data and labeled training examples. Furthermore, the mobile app provides real-time, COVID-19 severity assessments and personalized insights through attention-based feature importance, adding value to the clinical interpretation of the results.

Conclusions: Generative LLMs provide a robust alternative to traditional classifiers, particularly in scenarios with limited labeled data. Their ability to handle unstructured inputs and deliver personalized, real-time assessments without coding makes them highly adaptable to clinical settings. This study underscores the potential of LLM-powered conversational artificial intelligence (AI) in health care and encourages further exploration of its use for real-time, disease risk assessment and decision-making support.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信