Genome-Wide Analysis of Genetic Predispositions Linked to Damaged Membranes and Impaired Fertility as Indicators of Compromised Sperm-Egg Interaction Mechanisms in Frozen-Thawed Rooster Semen.

Natalia V Dementieva, Elena V Nikitkina, Yuri S Shcherbakov, Nikolai V Pleshanov, Anna E Ryabova, Anastasiia I Azovtseva, Yulia L Silyukova, Artem A Musidray, Darren K Griffin, Michael N Romanov
{"title":"Genome-Wide Analysis of Genetic Predispositions Linked to Damaged Membranes and Impaired Fertility as Indicators of Compromised Sperm-Egg Interaction Mechanisms in Frozen-Thawed Rooster Semen.","authors":"Natalia V Dementieva, Elena V Nikitkina, Yuri S Shcherbakov, Nikolai V Pleshanov, Anna E Ryabova, Anastasiia I Azovtseva, Yulia L Silyukova, Artem A Musidray, Darren K Griffin, Michael N Romanov","doi":"10.31083/FBS26022","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cryopreservation cannot be widely used for rooster sperm due to high incidences of cryoinjury, including damage to sperm membranes. Thus, cryopreserved rooster sperm has limited use due to low sperm motility and reduced fertilizing ability, which disrupts the mechanisms involved in sperm-egg interactions. Previously, we used an Illumina 60K single-nucleotide polymorphism (SNP) array to search for genes associated with rooster sperm quality, before and after freeze-thawing. As a continuation of these genome-wide association studies (GWAS), the present investigation used a denser 600K SNP chip. Consequently, the screen depth was expanded by many markers for cryo-resistance in rooster sperm while more candidate genes were identified. Thus, our study aimed to identify genome-wide associations with ejaculate quality indicators, including those concerning sperm membrane damage.</p><p><strong>Methods: </strong>We selected sperm quality indicators after freezing-thawing using samples from a proprietary cryobank collection created to preserve generative and germ cells of rare and endangered breeds of chickens and other animal species. A total of 258 ejaculates from 96 roosters of 16 different breeds were analyzed. Moreover, 96 respective DNA samples were isolated for genotyping using a 600K Affymetrix® Axiom® high-density genotyping array.</p><p><strong>Results: </strong>In total, 31 SNPs and 26 candidate genes were associated with characteristics of sperm membrane damage, progressive motility, and sperm cell respiration induction using 2,4-dinitrophenol. In particular, we identified the <i>ENSGALG00000029931</i> gene as a candidate for progressive motility, <i>PHF14</i> and <i>ARID1B</i> for damaged sperm membranes, and <i>KDELR3</i>, <i>DDX17</i>, <i>DMD</i>, <i>CDKL5</i>, <i>DGAT2</i>, <i>ST18</i>, <i>FAM150A</i>, <i>DIAPH2</i>, <i>MTMR7</i>, <i>NAV2</i>, <i>RAG2</i>, <i>PDE11A</i>, <i>IFT70A</i>, <i>AGPS</i>, <i>WDFY1</i>, <i>DEPDC5</i>, <i>TSC1</i>, <i>CASZ1</i>, and <i>PLEKHM2</i> for sperm cell respiration induction.</p><p><strong>Conclusions: </strong>Our findings provide important information for understanding the genetic basis of sperm membrane integrity and other traits that can potentially compromise the mechanisms involved in sperm-egg interactions. These findings are relevant to the persistence of fertility after thawing previously frozen rooster semen.</p>","PeriodicalId":73070,"journal":{"name":"Frontiers in bioscience (Scholar edition)","volume":"17 1","pages":"26022"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioscience (Scholar edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31083/FBS26022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Cryopreservation cannot be widely used for rooster sperm due to high incidences of cryoinjury, including damage to sperm membranes. Thus, cryopreserved rooster sperm has limited use due to low sperm motility and reduced fertilizing ability, which disrupts the mechanisms involved in sperm-egg interactions. Previously, we used an Illumina 60K single-nucleotide polymorphism (SNP) array to search for genes associated with rooster sperm quality, before and after freeze-thawing. As a continuation of these genome-wide association studies (GWAS), the present investigation used a denser 600K SNP chip. Consequently, the screen depth was expanded by many markers for cryo-resistance in rooster sperm while more candidate genes were identified. Thus, our study aimed to identify genome-wide associations with ejaculate quality indicators, including those concerning sperm membrane damage.

Methods: We selected sperm quality indicators after freezing-thawing using samples from a proprietary cryobank collection created to preserve generative and germ cells of rare and endangered breeds of chickens and other animal species. A total of 258 ejaculates from 96 roosters of 16 different breeds were analyzed. Moreover, 96 respective DNA samples were isolated for genotyping using a 600K Affymetrix® Axiom® high-density genotyping array.

Results: In total, 31 SNPs and 26 candidate genes were associated with characteristics of sperm membrane damage, progressive motility, and sperm cell respiration induction using 2,4-dinitrophenol. In particular, we identified the ENSGALG00000029931 gene as a candidate for progressive motility, PHF14 and ARID1B for damaged sperm membranes, and KDELR3, DDX17, DMD, CDKL5, DGAT2, ST18, FAM150A, DIAPH2, MTMR7, NAV2, RAG2, PDE11A, IFT70A, AGPS, WDFY1, DEPDC5, TSC1, CASZ1, and PLEKHM2 for sperm cell respiration induction.

Conclusions: Our findings provide important information for understanding the genetic basis of sperm membrane integrity and other traits that can potentially compromise the mechanisms involved in sperm-egg interactions. These findings are relevant to the persistence of fertility after thawing previously frozen rooster semen.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信