Historical View and Some Unsolved Problems in Red Blood Cell Membrane Research.

IF 3.3 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ingolf Bernhardt, Lars Kaestner
{"title":"Historical View and Some Unsolved Problems in Red Blood Cell Membrane Research.","authors":"Ingolf Bernhardt, Lars Kaestner","doi":"10.31083/FBL25331","DOIUrl":null,"url":null,"abstract":"<p><p>The article provides a comprehensive overview of biological membrane lipid composition and distribution and ion transport processes, focusing particularly on red blood cells (RBCs). It begins with a historical perspective, detailing the introduction of the terms 'cell' and 'membrane' in biological sciences, and the development of the fluid-mosaic model of membrane structure. Early findings on ion transport highlighted the non-equilibrium distribution of Na<sup>+</sup> and K<sup>+</sup> across cell membranes, leading to the discovery of the Na<sup>+</sup>/K<sup>+</sup> pump. The article delves into the lipid composition of RBC membranes, emphasising the roles of various lipids, including cardiolipin, and the concept of lipid rafts. These rafts, enriched with sphingolipids and cholesterol, play crucial roles in cellular processes. Variations in RBC shapes are discussed, with biophysical theories explaining transformations and pathological conditions affecting RBC morphology, such as sickle cell anaemia. Na<sup>+</sup> and K<sup>+</sup> transporters in RBC membranes are explored, highlighting the almost ubiquitous presence of the Na<sup>+</sup>/K<sup>+</sup> pump (absent in Carnivora RBCs) and various ion channels, including the Gárdos and Piezo1 channels. The article notes species-specific differences in ion transport mechanisms and the activation or suppression of transporters during RBC maturation. The mechanism of residual ion transport is examined, questioning whether a Na<sup>+</sup>(K<sup>+</sup>)/H<sup>+</sup> antiporter exists in the human RBC membrane. Residual ion fluxes are mediated by this antiporter, influenced by the fatty acid composition of the RBC membrane. The outlook section underscores the need for further research to fully understand the complexities of RBC membrane structure and function, suggesting that many questions remain unanswered despite significant advances.</p>","PeriodicalId":73069,"journal":{"name":"Frontiers in bioscience (Landmark edition)","volume":"30 3","pages":"25331"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioscience (Landmark edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31083/FBL25331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The article provides a comprehensive overview of biological membrane lipid composition and distribution and ion transport processes, focusing particularly on red blood cells (RBCs). It begins with a historical perspective, detailing the introduction of the terms 'cell' and 'membrane' in biological sciences, and the development of the fluid-mosaic model of membrane structure. Early findings on ion transport highlighted the non-equilibrium distribution of Na+ and K+ across cell membranes, leading to the discovery of the Na+/K+ pump. The article delves into the lipid composition of RBC membranes, emphasising the roles of various lipids, including cardiolipin, and the concept of lipid rafts. These rafts, enriched with sphingolipids and cholesterol, play crucial roles in cellular processes. Variations in RBC shapes are discussed, with biophysical theories explaining transformations and pathological conditions affecting RBC morphology, such as sickle cell anaemia. Na+ and K+ transporters in RBC membranes are explored, highlighting the almost ubiquitous presence of the Na+/K+ pump (absent in Carnivora RBCs) and various ion channels, including the Gárdos and Piezo1 channels. The article notes species-specific differences in ion transport mechanisms and the activation or suppression of transporters during RBC maturation. The mechanism of residual ion transport is examined, questioning whether a Na+(K+)/H+ antiporter exists in the human RBC membrane. Residual ion fluxes are mediated by this antiporter, influenced by the fatty acid composition of the RBC membrane. The outlook section underscores the need for further research to fully understand the complexities of RBC membrane structure and function, suggesting that many questions remain unanswered despite significant advances.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信