Dapagliflozin Attenuates Myocardial Inflammation and Apoptosis after Coronary Microembolization in Rats by Regulating the SIRT1/NF-κB Signaling Pathway.

IF 3.3 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tao Li, Chang-Jun Luo, Ze-Qiang Yi, Lang Li
{"title":"Dapagliflozin Attenuates Myocardial Inflammation and Apoptosis after Coronary Microembolization in Rats by Regulating the SIRT1/NF-κB Signaling Pathway.","authors":"Tao Li, Chang-Jun Luo, Ze-Qiang Yi, Lang Li","doi":"10.31083/FBL27082","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Coronary microembolization (CME) often occurs as a serious complication during or after percutaneous coronary intervention (PCI), leading to an impairment in heart function, inflammation, and cell death. Dapagliflozin (DAPA) has been shown to have cardioprotective effects. However, its role and exact mechanism in CME remains unclear.</p><p><strong>Methods: </strong>A preclinical CME model was developed via the administration of microspheres into the left ventricle. In an in vitro model, the CME-created microenvironment was observed by using lipopolysaccharide (LPS) with hypoxic induction on H9C2 cardiomyocytes. Before developing both experimental models, DAPA or the sirtuin 1 (SIRT1) inhibitor \"EX-527\" was administered. Echocardiography, histological examination, and molecular and immunological assays were carried out to assess the levels of cardiac tissue or cardiomyocyte damage, inflammation, and apoptosis.</p><p><strong>Results: </strong>Heart dysfunction and tissue damage caused by CME can be alleviated by pre-treatment with DAPA, which also reduces myocardial inflammation and apoptosis. Moreover, both experimental studies have depicted that DAPA can upregulate the SIRT1 level and downregulate the acetylation and phosphorylation levels of nuclear factor kappa-B (NF-κB) p65. This effect inhibits the induction of NF-κB signaling and mitigates cardiomyocyte damage. However, DAPA's cardioprotective effect was reversed when co-treated with EX-527.</p><p><strong>Conclusions: </strong>DAPA reduces myocardial damage caused by CME by suppressing myocarditis and apoptosis via the SIRT1/NF-κB axis.</p>","PeriodicalId":73069,"journal":{"name":"Frontiers in bioscience (Landmark edition)","volume":"30 3","pages":"27082"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioscience (Landmark edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31083/FBL27082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Coronary microembolization (CME) often occurs as a serious complication during or after percutaneous coronary intervention (PCI), leading to an impairment in heart function, inflammation, and cell death. Dapagliflozin (DAPA) has been shown to have cardioprotective effects. However, its role and exact mechanism in CME remains unclear.

Methods: A preclinical CME model was developed via the administration of microspheres into the left ventricle. In an in vitro model, the CME-created microenvironment was observed by using lipopolysaccharide (LPS) with hypoxic induction on H9C2 cardiomyocytes. Before developing both experimental models, DAPA or the sirtuin 1 (SIRT1) inhibitor "EX-527" was administered. Echocardiography, histological examination, and molecular and immunological assays were carried out to assess the levels of cardiac tissue or cardiomyocyte damage, inflammation, and apoptosis.

Results: Heart dysfunction and tissue damage caused by CME can be alleviated by pre-treatment with DAPA, which also reduces myocardial inflammation and apoptosis. Moreover, both experimental studies have depicted that DAPA can upregulate the SIRT1 level and downregulate the acetylation and phosphorylation levels of nuclear factor kappa-B (NF-κB) p65. This effect inhibits the induction of NF-κB signaling and mitigates cardiomyocyte damage. However, DAPA's cardioprotective effect was reversed when co-treated with EX-527.

Conclusions: DAPA reduces myocardial damage caused by CME by suppressing myocarditis and apoptosis via the SIRT1/NF-κB axis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信