Satvik Nayak, Henry Salkever, Ernesto Diaz, Avantika Sinha, Nikhil Deveshwar, Madeline Hess, Matthew Gibbons, Sule Sahin, Abhejit Rajagopal, Peder E Z Larson, Renuka Sriram
{"title":"Deep Learning-Based Tumor Segmentation of Murine Magnetic Resonance Images of Prostate Cancer Patient-Derived Xenografts.","authors":"Satvik Nayak, Henry Salkever, Ernesto Diaz, Avantika Sinha, Nikhil Deveshwar, Madeline Hess, Matthew Gibbons, Sule Sahin, Abhejit Rajagopal, Peder E Z Larson, Renuka Sriram","doi":"10.3390/tomography11030021","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objective: </strong>Longitudinal in vivo studies of murine xenograft models are widely utilized in oncology to study cancer biology and develop therapies. Magnetic resonance imaging (MRI) of these tumors is an invaluable tool for monitoring tumor growth and characterizing the tumors as well.</p><p><strong>Methods: </strong>In this work, a pipeline for automating the segmentation of xenografts in mouse models was developed. T<sub>2</sub>-weighted (T2-wt) MRI images from mice implanted with six different prostate cancer patient-derived xenografts (PDX) in the kidneys, liver, and tibia were used. The segmentation pipeline included a slice classifier to identify the slices that had tumors and subsequent training and validation using several U-Net-based segmentation architectures. Multiple combinations of the algorithm and training images for different sites were evaluated for inference quality.</p><p><strong>Results and conclusions: </strong>The slice classifier network achieved 90% accuracy in identifying slices containing tumors. Among the various segmentation architectures tested, the dense residual recurrent U-Net achieved the highest performance in kidney tumors. When evaluated across the kidneys, tibia, and liver, this architecture performed the best when trained on all data as compared to training on only data from a single site (and inferring on a multi-site tumor images), achieving a Dice score of 0.924 across the test set.</p>","PeriodicalId":51330,"journal":{"name":"Tomography","volume":"11 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946206/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tomography11030021","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background/objective: Longitudinal in vivo studies of murine xenograft models are widely utilized in oncology to study cancer biology and develop therapies. Magnetic resonance imaging (MRI) of these tumors is an invaluable tool for monitoring tumor growth and characterizing the tumors as well.
Methods: In this work, a pipeline for automating the segmentation of xenografts in mouse models was developed. T2-weighted (T2-wt) MRI images from mice implanted with six different prostate cancer patient-derived xenografts (PDX) in the kidneys, liver, and tibia were used. The segmentation pipeline included a slice classifier to identify the slices that had tumors and subsequent training and validation using several U-Net-based segmentation architectures. Multiple combinations of the algorithm and training images for different sites were evaluated for inference quality.
Results and conclusions: The slice classifier network achieved 90% accuracy in identifying slices containing tumors. Among the various segmentation architectures tested, the dense residual recurrent U-Net achieved the highest performance in kidney tumors. When evaluated across the kidneys, tibia, and liver, this architecture performed the best when trained on all data as compared to training on only data from a single site (and inferring on a multi-site tumor images), achieving a Dice score of 0.924 across the test set.
TomographyMedicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍:
TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine.
Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians.
Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.