A review of survival stacking: a method to cast survival regression analysis as a classification problem.

IF 1.2 4区 数学
Erin Craig, Chenyang Zhong, Robert Tibshirani
{"title":"A review of survival stacking: a method to cast survival regression analysis as a classification problem.","authors":"Erin Craig, Chenyang Zhong, Robert Tibshirani","doi":"10.1515/ijb-2022-0055","DOIUrl":null,"url":null,"abstract":"<p><p>While there are many well-developed data science methods for classification and regression, there are relatively few methods for working with right-censored data. Here, we review survival stacking, a method for casting a survival regression analysis problem as a classification problem, thereby allowing the use of general classification methods and software in a survival setting. Inspired by the Cox partial likelihood, survival stacking collects features and outcomes of survival data in a large data frame with a binary outcome. We show that survival stacking with logistic regression is approximately equivalent to the Cox proportional hazards model. We further illustrate survival stacking on real and simulated data. By reframing survival regression problems as classification problems, survival stacking removes the reliance on specialized tools for survival regression, and makes it straightforward for data scientists to use well-known learning algorithms and software for classification in the survival setting. This in turn lowers the barrier for flexible survival modeling.</p>","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2022-0055","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

While there are many well-developed data science methods for classification and regression, there are relatively few methods for working with right-censored data. Here, we review survival stacking, a method for casting a survival regression analysis problem as a classification problem, thereby allowing the use of general classification methods and software in a survival setting. Inspired by the Cox partial likelihood, survival stacking collects features and outcomes of survival data in a large data frame with a binary outcome. We show that survival stacking with logistic regression is approximately equivalent to the Cox proportional hazards model. We further illustrate survival stacking on real and simulated data. By reframing survival regression problems as classification problems, survival stacking removes the reliance on specialized tools for survival regression, and makes it straightforward for data scientists to use well-known learning algorithms and software for classification in the survival setting. This in turn lowers the barrier for flexible survival modeling.

虽然有很多成熟的分类和回归数据科学方法,但处理右删失数据的方法相对较少。在这里,我们回顾了生存堆叠法,这是一种将生存回归分析问题作为分类问题来处理的方法,从而允许在生存环境中使用一般的分类方法和软件。受 Cox 部分似然法的启发,生存堆叠法在一个具有二元结果的大型数据框架中收集生存数据的特征和结果。我们的研究表明,使用逻辑回归的生存堆积近似等同于 Cox 比例危险模型。我们还在真实数据和模拟数据上进一步说明了生存堆叠。通过将生存回归问题重构为分类问题,生存堆叠消除了对生存回归专用工具的依赖,使数据科学家可以直接使用众所周知的学习算法和软件在生存环境中进行分类。这反过来又降低了灵活建立生存模型的门槛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biostatistics
International Journal of Biostatistics Mathematics-Statistics and Probability
CiteScore
2.30
自引率
8.30%
发文量
28
期刊介绍: The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信