{"title":"A review of survival stacking: a method to cast survival regression analysis as a classification problem.","authors":"Erin Craig, Chenyang Zhong, Robert Tibshirani","doi":"10.1515/ijb-2022-0055","DOIUrl":null,"url":null,"abstract":"<p><p>While there are many well-developed data science methods for classification and regression, there are relatively few methods for working with right-censored data. Here, we review survival stacking, a method for casting a survival regression analysis problem as a classification problem, thereby allowing the use of general classification methods and software in a survival setting. Inspired by the Cox partial likelihood, survival stacking collects features and outcomes of survival data in a large data frame with a binary outcome. We show that survival stacking with logistic regression is approximately equivalent to the Cox proportional hazards model. We further illustrate survival stacking on real and simulated data. By reframing survival regression problems as classification problems, survival stacking removes the reliance on specialized tools for survival regression, and makes it straightforward for data scientists to use well-known learning algorithms and software for classification in the survival setting. This in turn lowers the barrier for flexible survival modeling.</p>","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2022-0055","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
While there are many well-developed data science methods for classification and regression, there are relatively few methods for working with right-censored data. Here, we review survival stacking, a method for casting a survival regression analysis problem as a classification problem, thereby allowing the use of general classification methods and software in a survival setting. Inspired by the Cox partial likelihood, survival stacking collects features and outcomes of survival data in a large data frame with a binary outcome. We show that survival stacking with logistic regression is approximately equivalent to the Cox proportional hazards model. We further illustrate survival stacking on real and simulated data. By reframing survival regression problems as classification problems, survival stacking removes the reliance on specialized tools for survival regression, and makes it straightforward for data scientists to use well-known learning algorithms and software for classification in the survival setting. This in turn lowers the barrier for flexible survival modeling.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.