AI-Techniques Loss-Based Algorithm for Severity Classification (ATLAS): a novel approach for continuous quantification of exertional symptoms during incremental exercise testing.
IF 4.7 2区 医学Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Abed A Hijleh, Sophia Wang, Danilo C Berton, Igor Neder-Serafini, Sandra Vincent, Matthew James, Nicolle Domnik, Devin Phillips, Luiz E Nery, Denis E O'Donnell, J Alberto Neder
{"title":"AI-Techniques Loss-Based Algorithm for Severity Classification (ATLAS): a novel approach for continuous quantification of exertional symptoms during incremental exercise testing.","authors":"Abed A Hijleh, Sophia Wang, Danilo C Berton, Igor Neder-Serafini, Sandra Vincent, Matthew James, Nicolle Domnik, Devin Phillips, Luiz E Nery, Denis E O'Donnell, J Alberto Neder","doi":"10.1093/jamia/ocaf051","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Heightened muscular effort and breathlessness (dyspnea) are disabling sensory experiences. We sought to improve the current approach of assessing these symptoms only at the maximal effort to new paradigms based on their continuous quantification throughout cardiopulmonary exercise testing (CPET).</p><p><strong>Materials and methods: </strong>After establishing sex- and age-adjusted reference centiles (0-10 Borg scale), we developed a novel algorithm (AI-Techniques Loss-Based Algorithm for Severity Classification [ATLAS]) based on reciprocal exponential loss for CPET data from patients with chronic obstructive lung disease of varied severity.</p><p><strong>Results: </strong>Categories of dyspnea intensity by ATLAS-but not dyspnea at peak exercise-correctly discriminated patients in progressively higher resting and exercise impairment (P < .05).</p><p><strong>Discussion: </strong>This new AI-techniques approach will be translated to the care of disabled patients to uncover the seeds and consequences of their activity-related symptoms.</p><p><strong>Conclusions: </strong>We used innovative informatics research to change paradigms in displaying, quantifying, and analyzing effort-related symptoms in patient populations.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocaf051","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Heightened muscular effort and breathlessness (dyspnea) are disabling sensory experiences. We sought to improve the current approach of assessing these symptoms only at the maximal effort to new paradigms based on their continuous quantification throughout cardiopulmonary exercise testing (CPET).
Materials and methods: After establishing sex- and age-adjusted reference centiles (0-10 Borg scale), we developed a novel algorithm (AI-Techniques Loss-Based Algorithm for Severity Classification [ATLAS]) based on reciprocal exponential loss for CPET data from patients with chronic obstructive lung disease of varied severity.
Results: Categories of dyspnea intensity by ATLAS-but not dyspnea at peak exercise-correctly discriminated patients in progressively higher resting and exercise impairment (P < .05).
Discussion: This new AI-techniques approach will be translated to the care of disabled patients to uncover the seeds and consequences of their activity-related symptoms.
Conclusions: We used innovative informatics research to change paradigms in displaying, quantifying, and analyzing effort-related symptoms in patient populations.
期刊介绍:
JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.