Christopher A Hylton, Katie Hansen, John E Tomkiel Dean
{"title":"Pairing between homologous sequences on the X and chromosome 3 in Drosophila male meiosis.","authors":"Christopher A Hylton, Katie Hansen, John E Tomkiel Dean","doi":"10.1093/genetics/iyaf059","DOIUrl":null,"url":null,"abstract":"<p><p>Pairing between sex chromosomes in male Drosophila normally occurs at intergenic spacer (IGS) sequences within the tandemly repeated rDNA genes that are located proximally in the heterochromatin on both the X and Y. Pairing is not limited to these sequences, however, and can also occur with high fidelity between the X and segments of X euchromatin that have been translocated to the Y. Such euchromatic pairings can lead to segregation of the X and Y, even when the X is rDNA-deficient, suggesting X-Y conjunction remains at these euchromatic sequences until anaphase I. From these previous observations, however, it was unclear if conjunction occurred directly at euchromatic sequences, or if conjunction occurred due to residual IGS repeats remaining on the rDNA-deleted X. Here, to ask if pairing and conjunction of X euchromatin could occur completely independent of the rDNA, we used fluorescent in situ hybridization to examine pairing between the X chromosome and Dp(1;3) chromosomes that contain a transposed segment of the X. We found that as little as 120 kb of euchromatic homology was sufficient to ensure nearly complete pairing and could contribute to directing segregation. The ability to direct segregation was independent of the conjunction complex proteins Mod(mdg4)-in-meiosis and Teflon. We conclude that pairing can occur at X euchromatin homologies, and these interactions may persist even in the absence of the conjunction complex and contribute to segregation of the paired elements to opposite spindle poles at meiosis I.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135174/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf059","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Pairing between sex chromosomes in male Drosophila normally occurs at intergenic spacer (IGS) sequences within the tandemly repeated rDNA genes that are located proximally in the heterochromatin on both the X and Y. Pairing is not limited to these sequences, however, and can also occur with high fidelity between the X and segments of X euchromatin that have been translocated to the Y. Such euchromatic pairings can lead to segregation of the X and Y, even when the X is rDNA-deficient, suggesting X-Y conjunction remains at these euchromatic sequences until anaphase I. From these previous observations, however, it was unclear if conjunction occurred directly at euchromatic sequences, or if conjunction occurred due to residual IGS repeats remaining on the rDNA-deleted X. Here, to ask if pairing and conjunction of X euchromatin could occur completely independent of the rDNA, we used fluorescent in situ hybridization to examine pairing between the X chromosome and Dp(1;3) chromosomes that contain a transposed segment of the X. We found that as little as 120 kb of euchromatic homology was sufficient to ensure nearly complete pairing and could contribute to directing segregation. The ability to direct segregation was independent of the conjunction complex proteins Mod(mdg4)-in-meiosis and Teflon. We conclude that pairing can occur at X euchromatin homologies, and these interactions may persist even in the absence of the conjunction complex and contribute to segregation of the paired elements to opposite spindle poles at meiosis I.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.