Multimodal recurrence risk prediction model for HR+/HER2- early breast cancer following adjuvant chemo-endocrine therapy: integrating pathology image and clinicalpathological features.
Xiaoyan Wu, Yiman Li, Jilong Chen, Jie Chen, Wenchuan Zhang, Xunxi Lu, Xiaorong Zhong, Min Zhu, Yuhao Yi, Hong Bu
{"title":"Multimodal recurrence risk prediction model for HR+/HER2- early breast cancer following adjuvant chemo-endocrine therapy: integrating pathology image and clinicalpathological features.","authors":"Xiaoyan Wu, Yiman Li, Jilong Chen, Jie Chen, Wenchuan Zhang, Xunxi Lu, Xiaorong Zhong, Min Zhu, Yuhao Yi, Hong Bu","doi":"10.1186/s13058-025-01968-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In HR+/HER2- early breast cancer (EBC) patients, approximately one-third of stage II and 50% of stage III patients experience recurrence, with poor outcomes after recurrence. Given that these patients commonly undergo adjuvant chemo-endocrine therapy (C-ET), accurately predicting the recurrence risk is crucial for optimizing treatment strategies and improving patient outcomes.</p><p><strong>Methods: </strong>We collected postoperative histopathological slides from 1095 HR+/HER2- EBC who received C-ET and were followed for more than five years at West China Hospital, Sichuan University. Two deep learning pipelines were developed and validated: ACMIL-based and CLAM-based. Both pipelines, designed to predict recurrence risk post-treatment, were based on pretrained feature encoders and multi-instance learning with attention mechanisms. Model performance was evaluated using a five-fold cross-validation approach and externally validated on HR+/HER2- EBC patients from the TCGA cohort.</p><p><strong>Results: </strong>Both ACMIL-based and CLAM-based pipelines performed well in predicting recurrence risk, with UNI-ACMIL demonstrating superior performance across multiple metrics. The average area under the curve (AUC) for the UNI-ACMIL pipeline in the five-fold cross-validation test set was 0.86 ± 0.02, and 0.80 ± 0.04 in the TCGA cohort. In the five-fold cross-validation test sets, effectively stratified patients into high-risk and low-risk groups, demonstrating significant prognostic differences. Hazard ratios for recurrence-free survival (RFS) ranged from 5.32 (95% CI 1.86-15.12) to 15.16 (95% CI 3.61-63.56). Moreover, among six different multimodal recurrence risk models, the WSI-based risk score was identified as the most significant contributor.</p><p><strong>Conclusion: </strong>Our multimodal recurrence risk prediction model is a practical and reliable tool that enhances the predictive power of existing systems relying solely on clinicopathological parameters. It offers improved recurrence risk prediction for HR+/HER2- EBC patients following adjuvant C-ET, supporting personalized treatment and better patient outcomes.</p>","PeriodicalId":49227,"journal":{"name":"Breast Cancer Research","volume":"27 1","pages":"27"},"PeriodicalIF":7.4000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11951786/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13058-025-01968-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background: In HR+/HER2- early breast cancer (EBC) patients, approximately one-third of stage II and 50% of stage III patients experience recurrence, with poor outcomes after recurrence. Given that these patients commonly undergo adjuvant chemo-endocrine therapy (C-ET), accurately predicting the recurrence risk is crucial for optimizing treatment strategies and improving patient outcomes.
Methods: We collected postoperative histopathological slides from 1095 HR+/HER2- EBC who received C-ET and were followed for more than five years at West China Hospital, Sichuan University. Two deep learning pipelines were developed and validated: ACMIL-based and CLAM-based. Both pipelines, designed to predict recurrence risk post-treatment, were based on pretrained feature encoders and multi-instance learning with attention mechanisms. Model performance was evaluated using a five-fold cross-validation approach and externally validated on HR+/HER2- EBC patients from the TCGA cohort.
Results: Both ACMIL-based and CLAM-based pipelines performed well in predicting recurrence risk, with UNI-ACMIL demonstrating superior performance across multiple metrics. The average area under the curve (AUC) for the UNI-ACMIL pipeline in the five-fold cross-validation test set was 0.86 ± 0.02, and 0.80 ± 0.04 in the TCGA cohort. In the five-fold cross-validation test sets, effectively stratified patients into high-risk and low-risk groups, demonstrating significant prognostic differences. Hazard ratios for recurrence-free survival (RFS) ranged from 5.32 (95% CI 1.86-15.12) to 15.16 (95% CI 3.61-63.56). Moreover, among six different multimodal recurrence risk models, the WSI-based risk score was identified as the most significant contributor.
Conclusion: Our multimodal recurrence risk prediction model is a practical and reliable tool that enhances the predictive power of existing systems relying solely on clinicopathological parameters. It offers improved recurrence risk prediction for HR+/HER2- EBC patients following adjuvant C-ET, supporting personalized treatment and better patient outcomes.
期刊介绍:
Breast Cancer Research, an international, peer-reviewed online journal, publishes original research, reviews, editorials, and reports. It features open-access research articles of exceptional interest across all areas of biology and medicine relevant to breast cancer. This includes normal mammary gland biology, with a special emphasis on the genetic, biochemical, and cellular basis of breast cancer. In addition to basic research, the journal covers preclinical, translational, and clinical studies with a biological basis, including Phase I and Phase II trials.