Structural basis of human ABCC4 recognition of cAMP and ligand recognition flexibility.

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xuepeng Wen, Kaixue Si, Dantong Zhu, Anqi Zhang, Changyou Guo, Minghui Li, Weiming Tian
{"title":"Structural basis of human ABCC4 recognition of cAMP and ligand recognition flexibility.","authors":"Xuepeng Wen, Kaixue Si, Dantong Zhu, Anqi Zhang, Changyou Guo, Minghui Li, Weiming Tian","doi":"10.1186/s13578-025-01377-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>ABCC4 (ATP-binding cassette sub-family C member 4) is a transporter protein that is primarily localized to the plasma membrane, and its efflux activity is associated with the progression of various cancers and the development of drug resistance. Cyclic adenosine monophosphate (cAMP) is an important biomolecule that is considered a transport substrate of ABCC4. However, there is currently no direct structural understanding of how ABCC4 binds cAMP, and the mechanisms by which it recognizes a diverse range of substrate ligands remain poorly understood. Some studies have indicated that, under physiological conditions, cAMP does not significantly stimulate the ATPase activity of ABCC4, making the commonly used ATPase activity assays for ABC proteins unsuitable for studying cAMP.</p><p><strong>Results: </strong>Here, we successfully resolved the cryo-electron microscopy (cryo-EM) structure of the human ABCC4-cAMP (hABCC4-cAMP) complex, revealing how hABCC4 binds to cAMP and identifying the key residues involved. This structure was compared with two other hABCC4 complex structures we obtained (Methotrexate and Prostaglandin E<sub>2</sub>) and with previously published structures. We discovered some new structural insights into how hABCC4 binds ligands. On the basis of the structural information obtained, we confirmed the feasibility of using 8-[Fluo]-cAMP in a transport assay to detect cAMP translocation and found that some challenges remain to be addressed.</p><p><strong>Conclusions: </strong>These results suggest that hABCC4 can bind cAMP and exhibits varying degrees of flexibility when binding with different substrates, including cAMP. These findings expand our understanding of the structural biology of ABCC4.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"15 1","pages":"39"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11948813/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Bioscience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13578-025-01377-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: ABCC4 (ATP-binding cassette sub-family C member 4) is a transporter protein that is primarily localized to the plasma membrane, and its efflux activity is associated with the progression of various cancers and the development of drug resistance. Cyclic adenosine monophosphate (cAMP) is an important biomolecule that is considered a transport substrate of ABCC4. However, there is currently no direct structural understanding of how ABCC4 binds cAMP, and the mechanisms by which it recognizes a diverse range of substrate ligands remain poorly understood. Some studies have indicated that, under physiological conditions, cAMP does not significantly stimulate the ATPase activity of ABCC4, making the commonly used ATPase activity assays for ABC proteins unsuitable for studying cAMP.

Results: Here, we successfully resolved the cryo-electron microscopy (cryo-EM) structure of the human ABCC4-cAMP (hABCC4-cAMP) complex, revealing how hABCC4 binds to cAMP and identifying the key residues involved. This structure was compared with two other hABCC4 complex structures we obtained (Methotrexate and Prostaglandin E2) and with previously published structures. We discovered some new structural insights into how hABCC4 binds ligands. On the basis of the structural information obtained, we confirmed the feasibility of using 8-[Fluo]-cAMP in a transport assay to detect cAMP translocation and found that some challenges remain to be addressed.

Conclusions: These results suggest that hABCC4 can bind cAMP and exhibits varying degrees of flexibility when binding with different substrates, including cAMP. These findings expand our understanding of the structural biology of ABCC4.

人类 ABCC4 识别 cAMP 的结构基础和配体识别灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell and Bioscience
Cell and Bioscience BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
10.70
自引率
0.00%
发文量
187
审稿时长
>12 weeks
期刊介绍: Cell and Bioscience, the official journal of the Society of Chinese Bioscientists in America, is an open access, peer-reviewed journal that encompasses all areas of life science research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信