Shilpa Garg, Robert Kitchen, Ramneek Gupta, Ewan Pearson
{"title":"Applications of AI in Predicting Drug Responses for Type 2 Diabetes.","authors":"Shilpa Garg, Robert Kitchen, Ramneek Gupta, Ewan Pearson","doi":"10.2196/66831","DOIUrl":null,"url":null,"abstract":"<p><strong>Unlabelled: </strong>Type 2 diabetes mellitus has seen a continuous rise in prevalence in recent years, and a similar trend has been observed in the increased availability of glucose-lowering drugs. There is a need to understand the variation in treatment response to these drugs to be able to predict people who will respond well or poorly to a drug. Electronic health records, clinical trials, and observational studies provide a huge amount of data to explore predictors of drug response. The use of artificial intelligence (AI), which includes machine learning and deep learning techniques, has the capacity to improve the prediction of treatment response in patients. AI can assist in the analysis of vast datasets to identify patterns and may provide valuable information on selecting an effective drug. Predicting an individual's response to a drug can aid in treatment selection, optimizing therapy, exploring new therapeutic options, and personalized medicine. This viewpoint highlights the growing evidence supporting the potential of AI-based methods to predict drug response with accuracy. Furthermore, the methods highlight a trend toward using ensemble methods as preferred models in drug response prediction studies.</p>","PeriodicalId":52371,"journal":{"name":"JMIR Diabetes","volume":"10 ","pages":"e66831"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11967697/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Diabetes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/66831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Unlabelled: Type 2 diabetes mellitus has seen a continuous rise in prevalence in recent years, and a similar trend has been observed in the increased availability of glucose-lowering drugs. There is a need to understand the variation in treatment response to these drugs to be able to predict people who will respond well or poorly to a drug. Electronic health records, clinical trials, and observational studies provide a huge amount of data to explore predictors of drug response. The use of artificial intelligence (AI), which includes machine learning and deep learning techniques, has the capacity to improve the prediction of treatment response in patients. AI can assist in the analysis of vast datasets to identify patterns and may provide valuable information on selecting an effective drug. Predicting an individual's response to a drug can aid in treatment selection, optimizing therapy, exploring new therapeutic options, and personalized medicine. This viewpoint highlights the growing evidence supporting the potential of AI-based methods to predict drug response with accuracy. Furthermore, the methods highlight a trend toward using ensemble methods as preferred models in drug response prediction studies.