Artesunate alleviated hippocampal neuron pyroptosis by down-regulating NLRP3 in rats with cerebral small vessel disease.

IF 3.2 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Xiaokun Wang, Hequan Zhong, Xiangyu Kong, Hongqiao Wei, Bing Li
{"title":"Artesunate alleviated hippocampal neuron pyroptosis by down-regulating NLRP3 in rats with cerebral small vessel disease.","authors":"Xiaokun Wang, Hequan Zhong, Xiangyu Kong, Hongqiao Wei, Bing Li","doi":"10.1007/s11011-025-01590-1","DOIUrl":null,"url":null,"abstract":"<p><p>Our study aims to investigate the potential of artesunate (ART) in improving learning and memory function by down-regulating NLRP3 and consequently affecting pyroptosis levels in the brains of rats with cerebral small vessel disease (CSVD). Initially, Sprague-Dawley (SD) rats were randomly assigned to five groups: the solvent sham operation group, solvent model group, low-dose ART (ART<sub>L</sub>) group, medium-dose ART (ART<sub>M</sub>) group, and high-dose ART group (ART<sub>H</sub>). CSVD rat models were established through bilateral common carotid artery occlusion (BCCAO). Subsequently, the rats were further divided into four groups: the empty plasmid control group (shNC) and three groups receiving NLRP3-shRNA interference plasmids (shNLRP3-1, shNLRP3-2, shNLRP3-3). We recorded animal behaviors and stained nerve cell changes. Hippocampal expression levels of Caspase-1, cleaved caspase-1, IL-18, IL-1β, GSDMD-N, β-actin, and NLRP3 were evaluated in each group. Our findings revealed that ART ameliorated cognitive dysfunction and brain tissue injury in CSVD rats. Moreover, expression levels of cleaved caspase-1, IL-18, IL-1β, GSDMD-N, and NLRP3 in the hippocampus were significantly reduced in the shNLRP3 group, resulting in improved cognitive function in these rats. These results suggest that NLRP3 could be a potential therapeutic target in CSVD development in rats, and modulating its expression might mitigate pathological alterations associated with CSVD. Subsequently, lipopolysaccharide (LPS) was injected into the tail vein, and inflammatory factors in peripheral blood of rats were found to be increased, suggesting that the level of intracranial NLRP3 was increased. In addition, MWM experiment showed that after the increase of NLRP3 expression, the repair effect of ART on learning and memory dysfunction was weakened. ART may enhance cognitive impairment in CSVD rats by downregulating NLRP3 expression in the brain, thereby inhibiting neuronal cell pyroptosis in the hippocampus.</p>","PeriodicalId":18685,"journal":{"name":"Metabolic brain disease","volume":"40 4","pages":"160"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11947036/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic brain disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11011-025-01590-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Our study aims to investigate the potential of artesunate (ART) in improving learning and memory function by down-regulating NLRP3 and consequently affecting pyroptosis levels in the brains of rats with cerebral small vessel disease (CSVD). Initially, Sprague-Dawley (SD) rats were randomly assigned to five groups: the solvent sham operation group, solvent model group, low-dose ART (ARTL) group, medium-dose ART (ARTM) group, and high-dose ART group (ARTH). CSVD rat models were established through bilateral common carotid artery occlusion (BCCAO). Subsequently, the rats were further divided into four groups: the empty plasmid control group (shNC) and three groups receiving NLRP3-shRNA interference plasmids (shNLRP3-1, shNLRP3-2, shNLRP3-3). We recorded animal behaviors and stained nerve cell changes. Hippocampal expression levels of Caspase-1, cleaved caspase-1, IL-18, IL-1β, GSDMD-N, β-actin, and NLRP3 were evaluated in each group. Our findings revealed that ART ameliorated cognitive dysfunction and brain tissue injury in CSVD rats. Moreover, expression levels of cleaved caspase-1, IL-18, IL-1β, GSDMD-N, and NLRP3 in the hippocampus were significantly reduced in the shNLRP3 group, resulting in improved cognitive function in these rats. These results suggest that NLRP3 could be a potential therapeutic target in CSVD development in rats, and modulating its expression might mitigate pathological alterations associated with CSVD. Subsequently, lipopolysaccharide (LPS) was injected into the tail vein, and inflammatory factors in peripheral blood of rats were found to be increased, suggesting that the level of intracranial NLRP3 was increased. In addition, MWM experiment showed that after the increase of NLRP3 expression, the repair effect of ART on learning and memory dysfunction was weakened. ART may enhance cognitive impairment in CSVD rats by downregulating NLRP3 expression in the brain, thereby inhibiting neuronal cell pyroptosis in the hippocampus.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Metabolic brain disease
Metabolic brain disease 医学-内分泌学与代谢
CiteScore
5.90
自引率
5.60%
发文量
248
审稿时长
6-12 weeks
期刊介绍: Metabolic Brain Disease serves as a forum for the publication of outstanding basic and clinical papers on all metabolic brain disease, including both human and animal studies. The journal publishes papers on the fundamental pathogenesis of these disorders and on related experimental and clinical techniques and methodologies. Metabolic Brain Disease is directed to physicians, neuroscientists, internists, psychiatrists, neurologists, pathologists, and others involved in the research and treatment of a broad range of metabolic brain disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信