Artificial Intelligence in the Diagnosis of Neurological Diseases Using Biomechanical and Gait Analysis Data: A Scopus-Based Bibliometric Analysis.

IF 3.2 Q2 CLINICAL NEUROLOGY
Aikaterini A Tsiara, Spyridon Plakias, Christos Kokkotis, Aikaterini Veneri, Minas A Mina, Anna Tsiakiri, Sofia Kitmeridou, Foteini Christidi, Evangelos Gourgoulis, Triantafylos Doskas, Antonia Kaltsatou, Konstantinos Tsamakis, Dimitrios Kazis, Dimitrios Tsiptsios
{"title":"Artificial Intelligence in the Diagnosis of Neurological Diseases Using Biomechanical and Gait Analysis Data: A Scopus-Based Bibliometric Analysis.","authors":"Aikaterini A Tsiara, Spyridon Plakias, Christos Kokkotis, Aikaterini Veneri, Minas A Mina, Anna Tsiakiri, Sofia Kitmeridou, Foteini Christidi, Evangelos Gourgoulis, Triantafylos Doskas, Antonia Kaltsatou, Konstantinos Tsamakis, Dimitrios Kazis, Dimitrios Tsiptsios","doi":"10.3390/neurolint17030045","DOIUrl":null,"url":null,"abstract":"<p><p>Neurological diseases are increasingly diverse and prevalent, presenting significant challenges for their timely and accurate diagnosis. The aim of the present study is to conduct a bibliometric analysis and literature review in the field of neurology to explore advancements in the application of artificial intelligence (AI) techniques, including machine learning (ML) and deep learning (DL). Using VOSviewer software (version 1.6.20.0) and documents retrieved from the Scopus database, the analysis included 113 articles published between 1 January 2018 and 31 December 2024. Key journals, authors, and research collaborations were identified, highlighting major contributions to the field. Science mapping investigated areas of research focus, such as biomechanical data and gait analysis including AI methodologies for neurological disease diagnosis. Co-occurrence analysis of author keywords allowed for the identification of four major themes: (a) machine learning and gait analysis; (b) sensors and wearable health technologies; (c) cognitive disorders; and (d) neurological disorders and motion recognition technologies. The bibliometric insights demonstrate a growing but relatively limited collaborative interest in this domain, with only a few highly cited authors, documents, and journals driving the research. Meanwhile, the literature review highlights the current methodologies and advancements in this field. This study offers a foundation for future research and provides researchers, clinicians, and occupational therapists with an in-depth understanding of AI's potentially transformative role in neurology.</p>","PeriodicalId":19130,"journal":{"name":"Neurology International","volume":"17 3","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944445/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurology International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/neurolint17030045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neurological diseases are increasingly diverse and prevalent, presenting significant challenges for their timely and accurate diagnosis. The aim of the present study is to conduct a bibliometric analysis and literature review in the field of neurology to explore advancements in the application of artificial intelligence (AI) techniques, including machine learning (ML) and deep learning (DL). Using VOSviewer software (version 1.6.20.0) and documents retrieved from the Scopus database, the analysis included 113 articles published between 1 January 2018 and 31 December 2024. Key journals, authors, and research collaborations were identified, highlighting major contributions to the field. Science mapping investigated areas of research focus, such as biomechanical data and gait analysis including AI methodologies for neurological disease diagnosis. Co-occurrence analysis of author keywords allowed for the identification of four major themes: (a) machine learning and gait analysis; (b) sensors and wearable health technologies; (c) cognitive disorders; and (d) neurological disorders and motion recognition technologies. The bibliometric insights demonstrate a growing but relatively limited collaborative interest in this domain, with only a few highly cited authors, documents, and journals driving the research. Meanwhile, the literature review highlights the current methodologies and advancements in this field. This study offers a foundation for future research and provides researchers, clinicians, and occupational therapists with an in-depth understanding of AI's potentially transformative role in neurology.

使用生物力学和步态分析数据诊断神经系统疾病的人工智能:基于范围的文献计量分析。
神经系统疾病日益多样化和流行,对其及时和准确的诊断提出了重大挑战。本研究的目的是在神经学领域进行文献计量分析和文献综述,以探索人工智能(AI)技术的应用进展,包括机器学习(ML)和深度学习(DL)。使用VOSviewer软件(版本1.6.20.0)和从Scopus数据库中检索的文献,分析了2018年1月1日至2024年12月31日期间发表的113篇文章。确定了主要期刊、作者和研究合作,突出了对该领域的主要贡献。科学测绘调查了研究重点领域,如生物力学数据和步态分析,包括用于神经疾病诊断的人工智能方法。作者关键词的共现分析允许识别四个主要主题:(a)机器学习和步态分析;(b)传感器和可穿戴保健技术;(c)认知障碍;(d)神经系统疾病和运动识别技术。文献计量学的见解表明,这一领域的合作兴趣在不断增长,但相对有限,只有少数被高度引用的作者、文献和期刊推动了研究。同时,文献综述着重介绍了目前该领域的研究方法和进展。这项研究为未来的研究奠定了基础,并为研究人员、临床医生和职业治疗师提供了对人工智能在神经病学中潜在的变革作用的深入了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurology International
Neurology International CLINICAL NEUROLOGY-
CiteScore
3.70
自引率
3.30%
发文量
69
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信