Evaluating the value of AI-generated questions for USMLE step 1 preparation: A study using ChatGPT-3.5.

IF 3.3 2区 教育学 Q1 EDUCATION, SCIENTIFIC DISCIPLINES
Alan Balu, Stefan T Prvulovic, Claudia Fernandez Perez, Alexander Kim, Daniel A Donoho, Gregory Keating
{"title":"Evaluating the value of AI-generated questions for USMLE step 1 preparation: A study using ChatGPT-3.5.","authors":"Alan Balu, Stefan T Prvulovic, Claudia Fernandez Perez, Alexander Kim, Daniel A Donoho, Gregory Keating","doi":"10.1080/0142159X.2025.2478872","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Students are increasingly relying on artificial intelligence (AI) for medical education and exam preparation. However, the factual accuracy and content distribution of AI-generated exam questions for self-assessment have not been systematically investigated.</p><p><strong>Methods: </strong>Curated prompts were created to generate multiple-choice questions matching the USMLE Step 1 examination style. We utilized ChatGPT-3.5 to generate 50 questions and answers based upon each prompt style. We manually examined output for factual accuracy, Bloom's Taxonomy, and category within the USMLE Step 1 content outline.</p><p><strong>Results: </strong>ChatGPT-3.5 generated 150 multiple-choice case-style questions and selected an answer. Overall, 83% of generated multiple questions had no factual inaccuracies and 15% contained one to two factual inaccuracies. With simple prompting, common themes included deep venous thrombosis, myocardial infarction, and thyroid disease. Topic diversity improved by separating content topic generation from question generation, and specificity to Step 1 increased by indicating that \"treatment\" questions were not desired.</p><p><strong>Conclusion: </strong>We demonstrate that ChatGPT-3.5 can successfully generate Step 1 style questions with reasonable factual accuracy, and this method may be used by medical students preparing for USMLE examinations. While AI-generated questions demonstrated adequate factual accuracy, targeted prompting techniques should be used to overcome ChatGPT's bias towards particular medical conditions.</p>","PeriodicalId":18643,"journal":{"name":"Medical Teacher","volume":" ","pages":"1-9"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Teacher","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1080/0142159X.2025.2478872","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Students are increasingly relying on artificial intelligence (AI) for medical education and exam preparation. However, the factual accuracy and content distribution of AI-generated exam questions for self-assessment have not been systematically investigated.

Methods: Curated prompts were created to generate multiple-choice questions matching the USMLE Step 1 examination style. We utilized ChatGPT-3.5 to generate 50 questions and answers based upon each prompt style. We manually examined output for factual accuracy, Bloom's Taxonomy, and category within the USMLE Step 1 content outline.

Results: ChatGPT-3.5 generated 150 multiple-choice case-style questions and selected an answer. Overall, 83% of generated multiple questions had no factual inaccuracies and 15% contained one to two factual inaccuracies. With simple prompting, common themes included deep venous thrombosis, myocardial infarction, and thyroid disease. Topic diversity improved by separating content topic generation from question generation, and specificity to Step 1 increased by indicating that "treatment" questions were not desired.

Conclusion: We demonstrate that ChatGPT-3.5 can successfully generate Step 1 style questions with reasonable factual accuracy, and this method may be used by medical students preparing for USMLE examinations. While AI-generated questions demonstrated adequate factual accuracy, targeted prompting techniques should be used to overcome ChatGPT's bias towards particular medical conditions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical Teacher
Medical Teacher 医学-卫生保健
CiteScore
7.80
自引率
8.50%
发文量
396
审稿时长
3-6 weeks
期刊介绍: Medical Teacher provides accounts of new teaching methods, guidance on structuring courses and assessing achievement, and serves as a forum for communication between medical teachers and those involved in general education. In particular, the journal recognizes the problems teachers have in keeping up-to-date with the developments in educational methods that lead to more effective teaching and learning at a time when the content of the curriculum—from medical procedures to policy changes in health care provision—is also changing. The journal features reports of innovation and research in medical education, case studies, survey articles, practical guidelines, reviews of current literature and book reviews. All articles are peer reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信