Wenju Niu, Junyu Yan, Min Hao, Yibo Zhang, Tianshi Li, Chen Liu, Qijian Li, Zihao Liu, Yincheng Su, Bo Peng, Yan Tan, Xiaochun Wang, Lei Wang, Hui Zhang, Guoqiang Yang
{"title":"MRI transformer deep learning and radiomics for predicting IDH wild type TERT promoter mutant gliomas.","authors":"Wenju Niu, Junyu Yan, Min Hao, Yibo Zhang, Tianshi Li, Chen Liu, Qijian Li, Zihao Liu, Yincheng Su, Bo Peng, Yan Tan, Xiaochun Wang, Lei Wang, Hui Zhang, Guoqiang Yang","doi":"10.1038/s41698-025-00884-y","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to predict IDH wt with TERTp-mut gliomas using multiparametric MRI sequences through a novel fusion model, while matching model classification metrics with patient risk stratification aids in crafting personalized diagnostic and prognosis evaluations.Preoperative T1CE and T2FLAIR sequences from 1185 glioma patients were analyzed. A MultiChannel_2.5D_DL model and a 2D DL model, both based on the cross-scale attention vision transformer (CrossFormer) neural network, along with a Radiomics model, were developed. These were integrated via ensemble learning into a stacking model. The MultiChannel_2.5D_DL model outperformed the 2D_DL and Radiomics models, with AUCs of 0.806-0.870. The stacking model achieved the highest AUC (0.855-0.904) across validation sets. Patients were stratified into high-risk and low-risk groups based on stacking model scores, with significant survival differences observed via Kaplan-Meier analysis and log-rank tests. The stacking model effectively identifies IDH wt TERTp-mutant gliomas and stratifies patient risk, aiding personalized prognosis.</p>","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":"9 1","pages":"89"},"PeriodicalIF":6.8000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950645/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41698-025-00884-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to predict IDH wt with TERTp-mut gliomas using multiparametric MRI sequences through a novel fusion model, while matching model classification metrics with patient risk stratification aids in crafting personalized diagnostic and prognosis evaluations.Preoperative T1CE and T2FLAIR sequences from 1185 glioma patients were analyzed. A MultiChannel_2.5D_DL model and a 2D DL model, both based on the cross-scale attention vision transformer (CrossFormer) neural network, along with a Radiomics model, were developed. These were integrated via ensemble learning into a stacking model. The MultiChannel_2.5D_DL model outperformed the 2D_DL and Radiomics models, with AUCs of 0.806-0.870. The stacking model achieved the highest AUC (0.855-0.904) across validation sets. Patients were stratified into high-risk and low-risk groups based on stacking model scores, with significant survival differences observed via Kaplan-Meier analysis and log-rank tests. The stacking model effectively identifies IDH wt TERTp-mutant gliomas and stratifies patient risk, aiding personalized prognosis.
期刊介绍:
Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.