Lecithin:cholesterol acyltransferase binds a discontinuous binding site on adjacent apolipoprotein A-I belts in HDL.

IF 5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Bethany Coleman, Shimpi Bedi, John H Hill, Jamie Morris, Kelly A Manthei, Rachel C Hart, Yi He, Amy S Shah, W Gray Jerome, Tomas Vaisar, Karin E Bornfeldt, Hyun Song, Jere P Segrest, Jay W Heinecke, Stephen G Aller, John J G Tesmer, W Sean Davidson
{"title":"Lecithin:cholesterol acyltransferase binds a discontinuous binding site on adjacent apolipoprotein A-I belts in HDL.","authors":"Bethany Coleman, Shimpi Bedi, John H Hill, Jamie Morris, Kelly A Manthei, Rachel C Hart, Yi He, Amy S Shah, W Gray Jerome, Tomas Vaisar, Karin E Bornfeldt, Hyun Song, Jere P Segrest, Jay W Heinecke, Stephen G Aller, John J G Tesmer, W Sean Davidson","doi":"10.1016/j.jlr.2025.100786","DOIUrl":null,"url":null,"abstract":"<p><p>Lecithin:cholesterol acyltransferase (LCAT) is a high-density lipoprotein (HDL) modifying protein that profoundly affects the composition and function of HDL subspecies. The cholesterol esterification activity of LCAT is dramatically increased by apolipoprotein A-I (APOA1) on HDL, but the mechanism remains unclear. Using site-directed mutagenesis, cross-linking, mass spectrometry, electron microscopy, protein engineering, and molecular docking, we identified two LCAT binding sites formed by helices 4 and 6 from two antiparallel APOA1 molecules in HDL. Although the reciprocating APOA1 \"belts\" form two ostensibly symmetrical binding locations, LCAT can adopt distinct orientations at each site, as shown by our 9.8 Å cryoEM envelope. In one case, LCAT membrane binding domains align with the APOA1 belts and, in the other, the HDL phospholipids. By introducing disulfide bonds between the APOA1 helical domains, we demonstrated that LCAT does not require helical separation during its reaction cycle. This indicates that LCAT, anchored to APOA1 belts, accesses substrates and deposits products through interactions with the planar lipid surface. This model of the LCAT/APOA1 interaction provides insights into how LCAT and possibly other HDL-modifying factors engage the APOA1 scaffold, offering potential strategies to enhance LCAT activity in individuals with genetic defects.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":" ","pages":"100786"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12049944/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jlr.2025.100786","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lecithin:cholesterol acyltransferase (LCAT) is a high-density lipoprotein (HDL) modifying protein that profoundly affects the composition and function of HDL subspecies. The cholesterol esterification activity of LCAT is dramatically increased by apolipoprotein A-I (APOA1) on HDL, but the mechanism remains unclear. Using site-directed mutagenesis, cross-linking, mass spectrometry, electron microscopy, protein engineering, and molecular docking, we identified two LCAT binding sites formed by helices 4 and 6 from two antiparallel APOA1 molecules in HDL. Although the reciprocating APOA1 "belts" form two ostensibly symmetrical binding locations, LCAT can adopt distinct orientations at each site, as shown by our 9.8 Å cryoEM envelope. In one case, LCAT membrane binding domains align with the APOA1 belts and, in the other, the HDL phospholipids. By introducing disulfide bonds between the APOA1 helical domains, we demonstrated that LCAT does not require helical separation during its reaction cycle. This indicates that LCAT, anchored to APOA1 belts, accesses substrates and deposits products through interactions with the planar lipid surface. This model of the LCAT/APOA1 interaction provides insights into how LCAT and possibly other HDL-modifying factors engage the APOA1 scaffold, offering potential strategies to enhance LCAT activity in individuals with genetic defects.

卵磷脂:胆固醇酰基转移酶结合邻近载脂蛋白a - i带的不连续结合位点。
卵磷脂:胆固醇酰基转移酶(LCAT)是一种高密度脂蛋白(HDL)修饰蛋白,深刻影响HDL亚种的组成和功能。HDL的载脂蛋白A-I (APOA1)可显著提高LCAT的胆固醇酯化活性,但其机制尚不清楚。通过位点定向诱变、交联、质谱、电镜、蛋白工程和分子对接等方法,我们在HDL中鉴定出了两个由螺旋4和6组成的LCAT结合位点。虽然往复的APOA1“带”形成两个表面对称的结合位置,但LCAT在每个位点可以采用不同的方向,如我们的9.8 Å低温包膜所示。在一种情况下,LCAT膜结合域与APOA1带对齐,在另一种情况下,与HDL磷脂对齐。通过在APOA1螺旋结构域之间引入二硫键,我们证明了LCAT在其反应周期中不需要螺旋分离。这表明锚定在APOA1带上的LCAT通过与平面脂质表面的相互作用进入底物并沉积产物。LCAT/APOA1相互作用的模型提供了LCAT和其他可能的hdl修饰因子如何参与APOA1支架的见解,提供了在遗传缺陷个体中增强LCAT活性的潜在策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Lipid Research
Journal of Lipid Research 生物-生化与分子生物学
CiteScore
11.10
自引率
4.60%
发文量
146
审稿时长
41 days
期刊介绍: The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信