Optimizing Non-Intersecting Synthetic Vascular Trees in Nonconvex Organs.

IF 4.4 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Etienne Jessen, Marc C Steinbach, Dominik Schillinger
{"title":"Optimizing Non-Intersecting Synthetic Vascular Trees in Nonconvex Organs.","authors":"Etienne Jessen, Marc C Steinbach, Dominik Schillinger","doi":"10.1109/TBME.2025.3554339","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The understanding of the mechanisms driving vascular development is still limited. Techniques to generate vascular trees synthetically have been developed to tackle this problem. However, most algorithms are limited to single trees inside convex perfusion volumes. We introduce a new framework for generating multiple trees inside general nonconvex perfusion volumes.</p><p><strong>Methods: </strong>Our framework combines topology optimization and global geometry optimization into a single algorithmic approach. Our first contribution is defining a baseline problem based on Murray's original formulation, which accommodates efficient solution algorithms. The problem of finding the global minimum is cast into a nonlinear optimization problem (NLP) with merely super-linear solution effort. Our second contribution extends the NLP to constrain multiple vascular trees inside any nonconvex boundary while avoiding intersections. We test our framework against a benchmark of an anatomic region of brain tissue and a vasculature of the human liver.</p><p><strong>Results: </strong>In all cases, the total tree energy is improved significantly compared to local approaches.</p><p><strong>Conclusion: </strong>By avoiding intersections globally, we can reproduce key physiological features such as parallel running inflow vessels and tortuous vessels.</p><p><strong>Significance: </strong>The ability to generate non-intersecting vascular trees inside nonconvex organs can improve the functional assessment of organs.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2025.3554339","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The understanding of the mechanisms driving vascular development is still limited. Techniques to generate vascular trees synthetically have been developed to tackle this problem. However, most algorithms are limited to single trees inside convex perfusion volumes. We introduce a new framework for generating multiple trees inside general nonconvex perfusion volumes.

Methods: Our framework combines topology optimization and global geometry optimization into a single algorithmic approach. Our first contribution is defining a baseline problem based on Murray's original formulation, which accommodates efficient solution algorithms. The problem of finding the global minimum is cast into a nonlinear optimization problem (NLP) with merely super-linear solution effort. Our second contribution extends the NLP to constrain multiple vascular trees inside any nonconvex boundary while avoiding intersections. We test our framework against a benchmark of an anatomic region of brain tissue and a vasculature of the human liver.

Results: In all cases, the total tree energy is improved significantly compared to local approaches.

Conclusion: By avoiding intersections globally, we can reproduce key physiological features such as parallel running inflow vessels and tortuous vessels.

Significance: The ability to generate non-intersecting vascular trees inside nonconvex organs can improve the functional assessment of organs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信