Aryon Eckleel Nabi, Pedram Pouladvand, Litian Liu, Ning Hua, Cyrus Ayubcha
{"title":"Machine Learning in Drug Development for Neurological Diseases: A Review of Blood Brain Barrier Permeability Prediction Models.","authors":"Aryon Eckleel Nabi, Pedram Pouladvand, Litian Liu, Ning Hua, Cyrus Ayubcha","doi":"10.1002/minf.202400325","DOIUrl":null,"url":null,"abstract":"<p><p>The blood brain barrier (BBB) is an endothelial-derived structure which restricts the movement of certain molecules between the general somatic circulatory system to the central nervous system (CNS). While the BBB maintains homeostasis by regulating the molecular environment induced by cerebrovascular perfusion, it also presents significant challenges in developing therapeutics intended to act on CNS targets. Many drug development practices rely partly on extensive cell and animal models to predict, to an extent, whether prospective therapeutic molecules can cross the BBB. In interest to reduce costs and improve prediction accuracy, many propose using advanced computational modeling of BBB permeability profiles leveraging empirical data. Given the scale of growth in machine learning and deep learning, we review the most recent machine learning approaches in predicting BBB permeability.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"44 3","pages":"e202400325"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949286/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202400325","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The blood brain barrier (BBB) is an endothelial-derived structure which restricts the movement of certain molecules between the general somatic circulatory system to the central nervous system (CNS). While the BBB maintains homeostasis by regulating the molecular environment induced by cerebrovascular perfusion, it also presents significant challenges in developing therapeutics intended to act on CNS targets. Many drug development practices rely partly on extensive cell and animal models to predict, to an extent, whether prospective therapeutic molecules can cross the BBB. In interest to reduce costs and improve prediction accuracy, many propose using advanced computational modeling of BBB permeability profiles leveraging empirical data. Given the scale of growth in machine learning and deep learning, we review the most recent machine learning approaches in predicting BBB permeability.
期刊介绍:
Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010.
Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation.
The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.