Revealing Herb-Symptom Associations and Mechanisms of Action in Protein Networks Using Subgraph Matching Learning.

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Menglu Li, Yongkang Wang, Yujing Ni, Hui Xiong, Zhinan Mei, Wen Zhang
{"title":"Revealing Herb-Symptom Associations and Mechanisms of Action in Protein Networks Using Subgraph Matching Learning.","authors":"Menglu Li, Yongkang Wang, Yujing Ni, Hui Xiong, Zhinan Mei, Wen Zhang","doi":"10.1109/JBHI.2025.3554520","DOIUrl":null,"url":null,"abstract":"<p><p>In traditional Chinese medicine, deciphering herb-symptom associations (HSAs) and revealing their mechanisms of action are crucial for bridging traditional knowledge and modern biomedicine. While previous studies have investigated HSAs using protein-protein interaction (PPI)-based network medicine method, they often treat all proteins equally, failing to capture the heterogeneous contributions of individual proteins to HSAs. This limitation hinders their capacity to reveal the mechanisms of action. To address this challenge, we propose a subgraph matching learning method, GraphHSA, for HSA prediction. GraphHSA maps herbs and symptoms onto the PPI network to construct subgraphs. Then, GraphHSA utilizes an attention mechanism to compute the importance of each protein on the subgraph, and weighted aggregate protein information to generate herb/symptom embeddings. Subsequently, these embeddings are combined to model the matching relationship between herb and symptom subgraphs, enabling association prediction. Additionally, a dual-contrastive learning strategy is introduced to generate discriminative representations to enhance prediction. Experiments indicate that GraphHSA not only applies to individual herbs but also extends to compound formulations composed of multiple herbs. By capturing the dynamic interactions among their components, GraphHSA enables the identification of key biological targets and the elucidation of the mechanisms underlying their therapeutic efficacy.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3554520","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In traditional Chinese medicine, deciphering herb-symptom associations (HSAs) and revealing their mechanisms of action are crucial for bridging traditional knowledge and modern biomedicine. While previous studies have investigated HSAs using protein-protein interaction (PPI)-based network medicine method, they often treat all proteins equally, failing to capture the heterogeneous contributions of individual proteins to HSAs. This limitation hinders their capacity to reveal the mechanisms of action. To address this challenge, we propose a subgraph matching learning method, GraphHSA, for HSA prediction. GraphHSA maps herbs and symptoms onto the PPI network to construct subgraphs. Then, GraphHSA utilizes an attention mechanism to compute the importance of each protein on the subgraph, and weighted aggregate protein information to generate herb/symptom embeddings. Subsequently, these embeddings are combined to model the matching relationship between herb and symptom subgraphs, enabling association prediction. Additionally, a dual-contrastive learning strategy is introduced to generate discriminative representations to enhance prediction. Experiments indicate that GraphHSA not only applies to individual herbs but also extends to compound formulations composed of multiple herbs. By capturing the dynamic interactions among their components, GraphHSA enables the identification of key biological targets and the elucidation of the mechanisms underlying their therapeutic efficacy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信