ExSMART-PreRA: Explainable Survival and Risk Assessment Using Machine Learning for Time Estimation in Preclinical Rheumatoid Arthritis.

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Fatemeh Salehi, Sara Bayat, Georg Schett, Arnd Kleyer, Thomas Altstidl, Bjoern M Eskofier
{"title":"ExSMART-PreRA: Explainable Survival and Risk Assessment Using Machine Learning for Time Estimation in Preclinical Rheumatoid Arthritis.","authors":"Fatemeh Salehi, Sara Bayat, Georg Schett, Arnd Kleyer, Thomas Altstidl, Bjoern M Eskofier","doi":"10.1109/JBHI.2025.3554364","DOIUrl":null,"url":null,"abstract":"<p><p>Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease affecting peripheral joints. Before clinical diagnosis, individuals may possess certain antibodies and experience discomfort but without specific signs of RA or inflamed joints. This stage is termed \"preclinical RA,\" as these individuals are at risk of developing the disease. This early stage is difficult to define, necessitating the development of individual risk models. This study aims to estimate the time and risk of RA onset using various survival machine learning models. After identifying the best model, we stratify patients into risk categories and identify key risk factors. Data from 154 anonymized preclinical RA patients were collected and analyzed. Several survival analysis models were evaluated, including Survival Tree, Random Survival Forest, Extreme Gradient Boosting Survival, Linear Multi-Task Model, Neural Multi-Task Model, Support Vector Machines, and Cox Proportional Hazards. The Random Survival Forest model outperformed the others, achieving a mean C-index of 0.798. Using this model, patients were stratified into low-, medium-, and high-risk groups, facilitating personalized scheduling of clinical visits based on RA risk. To enhance model interpretability, SHapley Additive Explanations (SHAP) are employed to identify key risk factors. The baseline level of rheumatoid factor (RF) antibodies is the most significant predictor. Higher levels of anti-cyclic citrullinated peptide (anti-CCP) and RF antibodies at baseline are linked to earlier RA onset. This method provides valuable insights into key factors that might be overlooked in clinical practice and can improve patient management and quality of life for those at risk of developing RA.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3554364","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease affecting peripheral joints. Before clinical diagnosis, individuals may possess certain antibodies and experience discomfort but without specific signs of RA or inflamed joints. This stage is termed "preclinical RA," as these individuals are at risk of developing the disease. This early stage is difficult to define, necessitating the development of individual risk models. This study aims to estimate the time and risk of RA onset using various survival machine learning models. After identifying the best model, we stratify patients into risk categories and identify key risk factors. Data from 154 anonymized preclinical RA patients were collected and analyzed. Several survival analysis models were evaluated, including Survival Tree, Random Survival Forest, Extreme Gradient Boosting Survival, Linear Multi-Task Model, Neural Multi-Task Model, Support Vector Machines, and Cox Proportional Hazards. The Random Survival Forest model outperformed the others, achieving a mean C-index of 0.798. Using this model, patients were stratified into low-, medium-, and high-risk groups, facilitating personalized scheduling of clinical visits based on RA risk. To enhance model interpretability, SHapley Additive Explanations (SHAP) are employed to identify key risk factors. The baseline level of rheumatoid factor (RF) antibodies is the most significant predictor. Higher levels of anti-cyclic citrullinated peptide (anti-CCP) and RF antibodies at baseline are linked to earlier RA onset. This method provides valuable insights into key factors that might be overlooked in clinical practice and can improve patient management and quality of life for those at risk of developing RA.

求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信