Research on SSR Genetic Molecular Markers and Morphological Differences of Different Pelodiscus sinensis Populations.

IF 2.8 3区 生物学 Q2 GENETICS & HEREDITY
Genes Pub Date : 2025-03-07 DOI:10.3390/genes16030318
Yixin Liang, Changqing Huang, Pei Wang, Hewei Xiao, Zi'ao Wang, Jiawei Zeng, Xiaoqing Wang, Shuting Xiong, Yazhou Hu, Qin Qin
{"title":"Research on SSR Genetic Molecular Markers and Morphological Differences of Different <i>Pelodiscus sinensis</i> Populations.","authors":"Yixin Liang, Changqing Huang, Pei Wang, Hewei Xiao, Zi'ao Wang, Jiawei Zeng, Xiaoqing Wang, Shuting Xiong, Yazhou Hu, Qin Qin","doi":"10.3390/genes16030318","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>The Chinese soft-shelled turtle (<i>Pelodiscus sinensis</i>) is an important species in freshwater aquaculture. Genetic admixture and degradation due to rapid industry expansion threaten sustainable development. This study aims to assess the genetic diversity and structure of six <i>P. sinensis</i> populations for better management.</p><p><strong>Methods: </strong>We combined morphological analysis and microsatellite markers to evaluate the genetic diversity of six populations. A discriminant function based on morphology was developed, achieving 71.4% classification accuracy. Two SSR markers were identified to specifically distinguish the HS population.</p><p><strong>Results: </strong>The six populations were classified into three subgroups. Frequent gene flow was observed among the CY, W, and DT populations, with most genetic variation occurring within individuals. However, significant genetic differentiation was detected between populations. While gene flow enhanced diversity, it suppressed differentiation.</p><p><strong>Conclusions: </strong>This study provides insights into the genetic structure and diversity of six <i>P. sinensis</i> populations. The discriminant function and SSR markers offer a basis for germplasm conservation and management, supporting sustainable aquaculture development.</p>","PeriodicalId":12688,"journal":{"name":"Genes","volume":"16 3","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11942387/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/genes16030318","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background/objectives: The Chinese soft-shelled turtle (Pelodiscus sinensis) is an important species in freshwater aquaculture. Genetic admixture and degradation due to rapid industry expansion threaten sustainable development. This study aims to assess the genetic diversity and structure of six P. sinensis populations for better management.

Methods: We combined morphological analysis and microsatellite markers to evaluate the genetic diversity of six populations. A discriminant function based on morphology was developed, achieving 71.4% classification accuracy. Two SSR markers were identified to specifically distinguish the HS population.

Results: The six populations were classified into three subgroups. Frequent gene flow was observed among the CY, W, and DT populations, with most genetic variation occurring within individuals. However, significant genetic differentiation was detected between populations. While gene flow enhanced diversity, it suppressed differentiation.

Conclusions: This study provides insights into the genetic structure and diversity of six P. sinensis populations. The discriminant function and SSR markers offer a basis for germplasm conservation and management, supporting sustainable aquaculture development.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Genes
Genes GENETICS & HEREDITY-
CiteScore
5.20
自引率
5.70%
发文量
1975
审稿时长
22.94 days
期刊介绍: Genes (ISSN 2073-4425) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to genes, genetics and genomics. It publishes reviews, research articles, communications and technical notes. There is no restriction on the length of the papers and we encourage scientists to publish their results in as much detail as possible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信