{"title":"Genomics May Be the Key to Understanding Endurance Training Pillars.","authors":"Ricardo Muller Bottura, Daniel Blasioli Dentillo","doi":"10.3390/genes16030338","DOIUrl":null,"url":null,"abstract":"<p><p>Endurance performance is primarily determined by three key physiological pillars: maximal oxygen uptake (VO<sub>2</sub>max), anaerobic threshold, and economy of movement. Recent research has suggested physiological resilience as a potential fourth dimension, referring to an athlete's ability to sustain performance despite accumulating fatigue. While the role of genetic factors in endurance has been widely studied, their influence on these pillars, particularly on fatigue resistance and long-term adaptation, remains an area of growing interest. This narrative review explores the genomic basis of endurance performance, analyzing genetic contributions to oxygen transport, metabolic efficiency, muscle composition, and recovery. Additionally, it discusses how genetic variability may modulate an athlete's response to training, including aspects of physiological adaptation, injury susceptibility, sleep, and nutrition. The review highlights physiological resilience in the context of endurance sports, discussing its connection to neuromuscular and metabolic regulation. By integrating genetic insights with established physiological principles, this review provides a comprehensive perspective on endurance adaptation. Future research directions are outlined to enhance our understanding of the genetic underpinnings of endurance, with implications for personalized training and performance optimization.</p>","PeriodicalId":12688,"journal":{"name":"Genes","volume":"16 3","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11942075/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/genes16030338","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Endurance performance is primarily determined by three key physiological pillars: maximal oxygen uptake (VO2max), anaerobic threshold, and economy of movement. Recent research has suggested physiological resilience as a potential fourth dimension, referring to an athlete's ability to sustain performance despite accumulating fatigue. While the role of genetic factors in endurance has been widely studied, their influence on these pillars, particularly on fatigue resistance and long-term adaptation, remains an area of growing interest. This narrative review explores the genomic basis of endurance performance, analyzing genetic contributions to oxygen transport, metabolic efficiency, muscle composition, and recovery. Additionally, it discusses how genetic variability may modulate an athlete's response to training, including aspects of physiological adaptation, injury susceptibility, sleep, and nutrition. The review highlights physiological resilience in the context of endurance sports, discussing its connection to neuromuscular and metabolic regulation. By integrating genetic insights with established physiological principles, this review provides a comprehensive perspective on endurance adaptation. Future research directions are outlined to enhance our understanding of the genetic underpinnings of endurance, with implications for personalized training and performance optimization.
期刊介绍:
Genes (ISSN 2073-4425) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to genes, genetics and genomics. It publishes reviews, research articles, communications and technical notes. There is no restriction on the length of the papers and we encourage scientists to publish their results in as much detail as possible.